COMPSCI 683 Project:
Quality Diversity for Texas Hold’Em

John Raisbeck Peter Phan Ruiqi Hu
jraisbeck@umass.edu pkphan@umass.edu ruiqihu@umass.edu
Giang Nguyen

gnnguyen@umass.edu

Abstract

Limit Texas Hold’em is a popular variant of Poker in which there are both commu-
nity cards, which are common knowledge, and private cards, which are not known
to other players, each with numerical values. We train agents to play one-on-one
matches of Limit Texas Hold’em in a tournament setting, where each player is
randomly matched with an opponent, drawn from a set containing itself, all other
learning models, and a number of hand-coded Texas Hold’em agents. The learning
agents are trained using a Reinforcement Learning Algorithm, PPO, which is an
actor-critic method. The reward function is created by combining the gain of the
player during a round and a diversity bonus at each state, which rewards learning
players for being different from one another, inspired by work on Novelty Search[1].
We provide agents with several abstractions on the state-space to simplify the game
and improve training speed. By running all of the models simultaneously in a large
training tournament with diversity bonuses, we are able to maintain a high-quality
and diverse training regime for each player.

1 Introduction

In this project, we aimed to improve the strategic decision-making of poker-playing Al by incorporat-
ing diversity strategies into the Proximal Policy Optimization (PPO) agent. By embracing quality
diversity, we developed a range of robust strategies. We simplified the complex decision-making
in poker by using game state and action abstractions. Our tests against both hand-crafted and algo-
rithmically trained players showed that our PPO agents consistently outperformed many opponents,
highlighting the benefits of diversity strategies in creating adaptable and competitive Al for strategic
games like poker.

1.1 Our Contributions

We developed an Al poker bot capable of competing effectively against various hand-coded poker
agents. Our bot harnesses self play and play against other learning and handwritten policies to
learn competitive strategies (agent learning by Peter Phan and tournament code/multithreading
by John Raisbeck), and employs sophisticated card and action abstraction techniques to optimize
decision-making and computational efficiency (implemented by Peter Phan). To ensure robust
performance across various computing platforms and enhance the bot’s adaptability from Mac, Linux,
and Windows systems, further system-specific optimizations were implemented (implemented by
John Raisbeck). Additionally, we validated our bot’s capabilities against a series of trivial models
that served as baseline opponents to fine-tune its strategies under controlled conditions (testing by
Giang Nguyen).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1.2 Related Work

Limit Texas Hold’em is a variant of Poker with over 10'* information sets [2]. The version we
consider is played between two players and consists of four betting rounds: pre-flop, flop, turn, and
river. At the start of each game, each player is chosen randomly to be either the small or big blind and
is required to bet a corresponding fixed bet. During a player’s turn, they can choose to act by folding,
calling, or raising. A game ends either when a player folds, forfeiting the pot (sum of wagers), or the
game goes to a showdown where the player with the better hand wins the entire pot. In this variant,
raise amounts are fixed and episodes are played for a maximum of 100 games or until one player
loses their entire initial stack.

Our project builds on established methodologies for Poker and augments them with a diversity bonus
during policy learning. Inspired by prior work in Al poker strategies, we have developed and fine-
tuned an approach based on the Reinforcement Learning technique of Proximal Policy Optimization
(PPO)[3]. The diversity component[1] implemented in our agents help them to generate, as a set,
a wide array of competitive approaches to poker, providing a rich training bed for all of the agents
being trained.

2 Model and Preliminaries

2.1 Abstractions

We represented the game state using a vector representing the street, agent’s hole, community cards,
a compressed version of both agents’ actions during the episode, and the agent’s stack. The street
and stack are encoded as normalized scalars. The agent’s hole and community cards are encoded as
one-hot vectors. We abstracted the action history of both players into ratios of calls to raises. We
used a 2-dimensional vector to represent the ratio of calls to raises counts played by the agent and
another similar vector to represent the respective ratio for the opponent’s actions. Importantly, this
abstraction achieves its smaller size by ignoring temporal information, which could be valuable for
certain strategies. Once concatenated, the game state is represented witha 54+ 52+4524+4+1 =114
dimensional vector.

2.2 Process Model

Consider the following notation for the Poker process: we represent Texas Hold’em as a discrete time
decision process, represented by a tuple (S, .4, P, 7, r,~y) that we will hope to solve. The goal of our
approach is to learn an optimal policy, 7*, that maximizes the expected cumulative reward.

We define the reward function 7 in the process as follows: there is no reward for changes in the agent’s
winnings from the game except in the final step, and at each step there is a small reward based on the
distance between the agent’s action-distribution on the current state and the action distribution which
the other learning policies would have exhibited in the same state. Specifically, we define the return
of a round to be the net change to the agent stack since the last round in the last state, denoting the
stack after the game stack’ and that at the beginning of the game stack. For instance, if the agent
ends up betting and losing $60 after a round, their reward for the last state-action transition of that
round would be —60. If the agent were to have won this round, the reward would be 60. The diversity
bonus helps to encourage the learned policies to differentiate themselves and helps to maintain a
diverse training environment for all of the policies. The diversity score is computed by taking the
average of the three smallest Euclidean distances between action distributions (encoded as vectors in
IR3) of different training policies on the current state and added to the stack-based reward. The set of
training policies is denoted 1I in the equation below.

r(s,a) = {stack’(w) — stack(m) + diversity_bonus(s,m, II), if (s,a) is terminal)

diversity_bonus(s,r,II), otherwise

2.2.1 PPO

Proximal Policy Optimization (PPO) is a class of on-policy Reinforcement Learning algorithms
introduced by Schulman et al. [3] that aims to take the biggest possible improvement step on a policy

without stepping too far to cause performance collapse. In our implementation we used the PPO-Clip
variant of PPO which clips the objective function to reduce the learner taking excessively large steps.
We follow an actor-critic structure where we learn the optimal policy with an actor network and the
value function with a separate critic network. We denote the parameters of a policy model 6 and that
of a value function network ¢. Then we update our policy from 7y, using PPO-Clip as follows:

041 = arg max Es anm, [L(8,a,0k,0)]. 2)

Where L is the objective function which is defined as:

mo(als)
o, (als)

mo(als)

L(s,a,0;,0) = mi
(s,a,0k,0) mm()

A™% (s,a), Clip(1 -1+ 6) A% (s, a)) 3)

Where the advantage function A™x is a function of the difference between the reward collected by
mp,, and the value given by our critic model for a given state-action pair. We will use this difference as
the loss function for optimizing our critic network. Altogether, our procedure for training a singular
PPO agent goes as follows:

Algorithm 1 PPO-Clip

1: Initialize policy parameters 6y and value function parameters ¢q

2: fork=0,1,2,...do

3: Play a round of poker with 7y, and collect a set of trajectories Dy, = {7;}
4 Compute rewards according to (1)

5 Compute advantage based on Vy,

6: Update the policy to 7y, ,, by maximizing (3) via gradient ascent

7

8:

Update the value function to Vg, ., by regression via gradient descent
end for

2.3 Tournament Play

We trained each of 14 different PPO Players in thousands of rounds against the RaisedPlayer,
MCPIlayer, CallPlayer, RiskyPlayer, SafePlayer, RandomPlayer, HonestPlayer, and BluffPlayer, as
well as the 14 learned PPO players (including self-play), to produce many diverse policies. When
agents fell too far behind (for instance, occasionally, we found that agents would simply collapse
into always folding), we culled them if their performance during validation rounds fell below a
preassigned standard.

3 Results

In addition to the given randomized player and the player that always raises given in the starter code,
we developed 8 other hand-coded players, some trivial, and others much more complex, including a
player which ran Monte Carlo simulations to approximate the best action and a hand-model-quality
estimator based player which raised only if the quality of the hand was above a certain threshold. See
the Appendix for detailed descriptions of each player.

3.1 Experiments

We created and trained 14 policies in a single 3290-task tournament run (involving roughly 50,000
episodes of poker), and aimed to validate the performance of each policy. Testing was conducted by
simulating 500 games, each with a maximum of 100 rounds. We look at the performance by PPO08
and PPOOQ7 as they showed very contrasting policies but led the pack in terms of performance by
consistently beating the random player and exhibiting impressive win rates against other players,
notable the raise player. Figure 1 and 2 illustrate the percentage of actions taken by two different
policies generated during our tournament run. Both policies exhibited a 100% win rate against
the random player, with the bluff player posing the greatest challenge. Both agents performed
significantly better against the Honest player than the Monte Carlo (MCE) Player, despite the Honest
player being a variation of the MCE Player. PPO08 tended to be more aggressive, preferring to raise

over calling, while PPO07 was more conservative, always choosing to call

fold anytime during the games.

PPO07_180's strategy against different opponents

PPO07_180 vs random
100% winrate

PPO07_180 vs raise
51% winrate

PPO07_180 vs safe
46% winrate

PPO07_180 vs mce
1% winrate

PPO07_180 vs call
48% winrate

PPO07_180 vs honest
72% winrate

52% winrate

0% winrate

PPO07_180 vs risky

PPO07_180 vs bluff

. Neither agent chose to

- Folds
—calls
m—Raises

Figure 1: This is the action distribution of the PPOQ7 player after being trained for 180 episodes.

PPO08_30's strategy against different opponents

PPO08_30 vs random
100% winrate

PPO08_30 vs raise
50% winrate

PPO08_30 vs safe
46% winrate

PPO08_30 vs mce
19% winrate

PP0O08_30 vs call
50% winrate

PPO08_30 vs honest
65% winrate

51% winrate

15% winrate

PPO08_30 vs risky

PPO08_30 vs bluff

3

i
202

Figure 2: This is the action distribution of the PPO08 player after being trained for 30 episodes.

Opponent PPO7_1 80 PP08_3O
Win% | ROI | Win% | ROI
RandomPlayer 1.0 99 1.0 99
RaisePlayer 0.51 | 2.8 | 0.502 0.6
CallPlayer 0.48 | 0.5 | 0.504 2.8
RiskyPlayer 0.524 | 1.6 | 0.516 3.4
SafePlayer 046 | 0.1 | 0.462 | —5.6
MCE Player 0.018 | —69 | 0.19 | —62
HonestPlayer 0.72 40 | 0.654 31
BluftPlayer 0.0 | —98 | 0.156 | —69

Table 1: Win rate percentages and return on investment (ROI) statistics for PPO07_180 and PPOS_30

4 Discussion

The results presented above are only a tiny sample of the total set of results that we obtained during
our experiments. We found that in the beginning of a training run, agents typically achieved significant
advances in performance and used diverse strategies, only later coming to collapse as can be seen
above into constant (or near-constant) policies. While some policies ultimately achieve reasonable
performance, many of these degenerate policies begin to fail. The reason for these failings remains
undetermined, though future work may seek to determine whether there was an issue with our
procedure for determining quality hyperparameters—because these hyperparameters were determined

during testing over a much smaller number of episodes, it is possible that they produce an excessively
aggressive update regime which works well early in training but leads to lower-quality collapsed
policies towards the end of the training process. We note that it may be difficult to learn an agent
that is adverse enough to be able to recognize and exploit their opponent’s strategy within the 100
rounds a single game lasts for. However, we also note that it should be possible to learn a dominating
strategy just based on the strength of one’s hand, as evident by the MCE player.

5 Conclusion

In conclusion, the results obtained from our training tournament produced PPO policies which
demonstrated promising performance and learning potential, exhibiting strong win rates against
most opponents. It is, however, essential to acknowledge that the effectiveness of PPO is influenced
by various factors, some of which may not have been appropriately configured during our testing.
Nonetheless, our findings reaffirm the potential of PPO as a viable approach for developing au-
tonomous agents capable of strategic decision-making in complex environments, especially Poker,
where we found that even short training runs could produce competent policies which can win against
even advanced Monte-Carlo-based players.

6 Detailed Contributions:

6.1 Peter Phan

1. Wrote most of the hand-coded player code

. Wrangled the orignal codebase (including investigating bugs in the startercode)
. Wrote learning player (PPO) code

. Worked on formatting code for submission

. Worked on commenting code

. Performed hyperparameter testing and tuning

. Sifted through results, ran evaluations, and generated graphs and tables

. Edited final report

0 N N L B~ WN

6.2 John Raisbeck

. Organized all team meetings

. Wrote tournament code

. Wrote remaining player code
. Wrote multithreading code

. Worked on commenting code
. Wrote validation code

. Fixed code for cross-platform operation

0 N N L AW =

. Edited final report

6.3 Giang Nguyen
1. Performed some final result testing to generate graphs
2. Drafted the report
3. Edited final report

6.4 Ruiqi Hu

1. Wrote drafts of the project’s abstract and introduction
2. Tested the project to ensure functionality

References

[1] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary Computation, 19:189-223, 2011. URL https://api.
semanticscholar.org/CorpusID:12129661.

[2] Michael Johanson Oskari Tammelin, Neil Burch and Michael Bowling. Solving heads-up limit
texas hold’em, 2015.

[3] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

A Appendix

A.1 Players

Call player: Similar to the raise player, this player will call whenever possible, otherwise they will
fold.

Risky Player: This player model keeps track of the number of raises and calls their opponent plays
in a round. At their turn, this player will raise if the ratio of their opponent’s raise to call moves is
more than one and call otherwise.

Safe Player: Similar to the risky player model this player will also act based on a record of their
opponent’s moves. This player will fold if their opponent’s raise to call ratio is higher than one and
call otherwise.

Monte Carlo Player: This player will compute a Monte Carlo Estimation of the probability that their
hand is better than their opponent’s given their hole and current community cards. If the probability
of their hand is better is less than 0.1 then they will fold. If the probability of their hand is better is
between 0.1 and 0.9 then they will call. If the probability of their hand is better higher than 0.9 then
they will fold. Since the nature of this player is to play for the strength of their hand, we used this
model to train our pretrain models in our experiments. The advantage of this model is that it is not
as slow as the Emulator player which is good for training, and it was effective in teaching our base
models about the strengths of hands.

Honest Player: The Honest player operates similarly to the Monte Carlo player but with different
breakpoints for its actions. This player will fold if their estimate tells them they have a less than a 0.5
probability of having a better hand, and will raise otherwise.

Bluff Player: A less conservative version of the Monte Carlo Player.Bluff Player will call if the
estimated winrate of their hand is less than 0.75 and raise otherwise.

Emulator Player This player will emulate games against their opponent to determine their action.
For each valid action this player can play, it will emulate playing n games and aggregate the results.
Each simulation starts at the current game state, uses the opponent’s exact model, and runs until the
round finishes. The Emulator player will pick the action that gives the highest average return from
the simulations. In our testing, we found this model to be the most difficult to beat.

A.2 Markov Decision Process

An MDP is defined by the tuple (S, A, P,n,r,7), where S is the state space, A is the action space,
P is the transition dynamic P : (S x A x 8) — [0, 1], n(+) is the initial state distribution, r is the
reward function r : § x A — R, and v € (0, 1) is the discount factor.

https://api.semanticscholar.org/CorpusID:12129661
https://api.semanticscholar.org/CorpusID:12129661

	Introduction
	Our Contributions
	Related Work

	Model and Preliminaries
	Abstractions
	Process Model
	PPO

	Tournament Play

	Results
	Experiments

	Discussion
	Conclusion
	Detailed Contributions:
	Peter Phan
	John Raisbeck
	Giang Nguyen
	Ruiqi Hu

	Appendix
	Players
	Markov Decision Process

