
Preprint

MIGRATE: MIXED-POLICY GRPO FOR ADAPTATION
AT TEST-TIME

Peter Phan∗, Dhruv Agarwal∗, Andrew McCallum
University of Massachusetts Amherst
Amherst, MA 01003, USA
{pkphan, dagarwal, mccallum}@cs.umass.edu

Kavitha Srinivas, Horst Samulowitz, Pavan Kapanipathi
IBM Research
{kavitha.srinivas, samulowitz, kapanipa}@ibm.com

ABSTRACT

Large language models (LLMs) are increasingly being applied to black-box op-
timization tasks, from program synthesis to molecule design. Prior work typi-
cally leverages in-context learning to iteratively guide the model towards better
solutions. Such methods, however, often struggle to balance exploration of new
solution spaces with exploitation of high-reward ones. Recently, test-time train-
ing (TTT) with synthetic data has shown promise in improving solution quality.
However, the need for hand-crafted training data tailored to each task limits fea-
sibility and scalability across domains. To address this problem, we introduce
MIGRATE—a method for online TTT that uses GRPO as a search algorithm to
adapt LLMs at inference without requiring external training data. MIGRATE op-
erates via a mixed-policy group construction procedure that combines on-policy
sampling with two off-policy data selection techniques: greedy sampling, which
selects top-performing past completions, and neighborhood sampling (NS), which
generates completions structurally similar to high-reward ones. Together, these
components bias the policy gradient towards exploitation of promising regions
in solution space, while preserving exploration through on-policy sampling. We
evaluate MIGRATE on three challenging domains—word search, molecule opti-
mization, and hypothesis+program induction on the Abstraction and Reasoning
Corpus (ARC)—and find that it consistently outperforms both inference-only and
TTT baselines, demonstrating the potential of online TTT as a solution for com-
plex search tasks without external supervision.

1 INTRODUCTION

Large language models (LLMs) have emerged as general-purpose tools for solving a wide range of
black-box optimization problems Boiko et al. (2023); Ramos et al. (2023); Liu et al. (2024). These
models offer a flexible interface for generating candidate solutions, both in structured tasks, e.g.,
molecule design Ranković & Schwaller (2023); Kristiadi et al. (2024); Gruver et al. (2024), and un-
structured, natural-language tasks, e.g., scientific hypothesis generation Lu et al. (2024); Majumder
et al. (2025); Agarwal et al. (2025b).

Recent work has shown that in-context learning (ICL) Brown et al. (2020) can effectively be used to
steer LLMs toward higher-quality outputs in such tasks Meyerson et al. (2023); Yang et al. (2024);
Agarwal et al. (2025a). However, ICL alone lacks a principled mechanism to balance exploration of
novel solution areas with exploitation of known high-reward ones Krishnamurthy et al. (2024) based
on simply injecting a history of candidates in-context. Without this balance, the model may either
get trapped in local optima or waste sampling budget on unpromising regions of the solution space.

∗These authors contributed equally.

1

ar
X

iv
:2

50
8.

08
64

1v
1

 [
cs

.L
G

]
 1

2
A

ug
 2

02
5

https://arxiv.org/abs/2508.08641v1

Preprint

Figure 1: Overview of MIGRATE. Given a search problem, MIGRATE iteratively searches for op-
timal solutions by sampling candidates and updating its policy model πt

θ using mixed-policy GRPO.
In each iteration, we combine online samples (•) from the current policy distribution, top-performing
past solutions (⋆) as greedy references, and samples drawn from the neighborhoods of greedy solu-
tions (◦) to form a GRPO group. The resulting group is used to update πt

θ and migrate towards a
sampling distribution that is likely to generate higher-quality solutions according to f(·).

To improve LLM-based search, recent methods have explored test-time training (TTT) Sun et al.
(2020); Hardt & Sun (2024)—a paradigm inspired from the human ability to generalize from a few
examples Yu et al. (2025a), in which the LLM is adapted at inference time for a specific prob-
lem instance before sampling a set of candidate solutions to evaluate. Similarly, some works have
explored the use of off-policy reinforcement learning to efficiently learn suitable sampling distri-
butions Levine et al. (2020); Yan et al. (2025). However, these approaches either rely on carefully
hand-crafted, task-specific data generation strategies or assume availability of expert demonstration
data Akyürek et al. (2025); Li et al. (2024), both of which limit the generality and scalability of such
solutions.

To address these shortcomings, we cast search as an online reinforcement learning problem and
leverage group relative policy optimization (GRPO) Shao et al. (2024) to iteratively find promising
regions of the search space, balancing exploration and exploitation. We, thus, propose MIGRATE
(Mixed-policy GRPO for Adaptation at Test-Time), a method for online TTT that enables adaptive
search with LLMs without requiring any external, handcrafted training data1. Our method combines:

1. On-policy sampling, which ensures continual exploration of the solution space,

2. Greedy sampling, which reuses top-performing past completions to exploit known high-
reward regions, and

3. Neighborhood sampling (NS), which generates structurally similar variants of high-reward
completions to facilitate local exploration.

Crucially, all components in MIGRATE use only model-generated signals, eliminating the need for
any external training data. We perform experiments on three challenging domains with diverse so-
lution spaces and reward functions—word search, molecule optimization, and hypothesis+program
induction using the challenging Abstraction and Reasoning Corpus (ARC) Chollet (2019). Across
all domains, MIGRATE consistently outperforms both inference-only and TTT baselines, demon-
strating that online TTT with mixed-policy guidance offers a scalable and general approach to LLM-
based black-box optimization.

To summarize, our main contributions are as follows:

• We introduce MIGRATE, a method to search for optimal solutions with LLMs using an online
test-time training (TTT) algorithm without external demonstrations.

• We propose a mixed-policy group construction strategy that combines on-policy sampling with
two novel off-policy techniques—greedy sampling and neighborhood sampling.

1Our code is available at: https://github.com/dhdhagar/migrate.

2

https://github.com/dhdhagar/migrate

Preprint

• We conduct comprehensive experiments across three diverse domains, showing that MIGRATE
outperforms both inference-only and TTT baselines in complex black-box optimization tasks.

2 RELATED WORK

Test-time training. Test-time training (TTT) aims to improve model performance on distribution
shifts by updating models at inference. Sun et al. (2020) introduced TTT using a self-supervised
objective on images to adapt network weights at test time. Hardt & Sun (2024) demonstrate that fine-
tuning LLMs on data closely related to each test prompt can yield large accuracy gains, extending
TTT to reasoning tasks. Hübotter et al. (2025) show that nearest-neighbor retrieval for test-time fine-
tuning often wastes effort on redundant examples, and instead propose an active-learning method
that chooses maximally informative examples to reduce model uncertainty.

Local-structure methods. Instance-based learning (or “local learning”) Atkeson et al. (1997) is
a common framework in machine learning where local structure is exploited around a test point to
improve model accuracy, e.g., locally-weighted regression Cleveland (1979). In modern practice,
this manifests as retrieving nearest-neighbor examples to guide adaptation, referred to as retrieval-
augmented generation (RAG) or case-based reasoning (CBR) Lewis et al. (2020); Das et al. (2021);
Thai et al. (2023); Agarwal et al. (2024). In reinforcement learning, local policy search methods
(e.g., off-policy local improvements, trust-region updates) behave like hill-climbers in the policy
space.

Evolutionary computation. EvoTune Surina et al. (2025) uses an LLM as a policy-generating
operator in an evolutionary loop, then applies RL fine-tuning to iteratively improve it. AlphaEvolve
Novikov et al. (2025) similarly creates an agent that uses multiple LLMs and automated evaluators
to propose and refine codebases via an evolutionary framework. FunSearch Romera-Paredes et al.
(2024) pairs a pre-trained LLM with an automated evaluator and repeatedly samples and scores
code functions, effectively evolving programs to solve mathematical problems. In these systems,
the “population” of programs or policies evolves over generations, often via an islands model or
parallel ensembles, to avoid local traps.

RLVR. Reinforcement Learning with Verifiable Rewards (RLVR) Lambert et al. (2025);
DeepSeek-AI et al. (2025) is an approach for fine-tuning LLMs using RL guided by ground-truth
reward functions, in contrast to typical RL-based methods that rely on learned or heuristic-based
reward functions, which can introduce ambiguity. In mathematics and code generation, these re-
wards are determined by correctness, such as matching a ground-truth solution or passing unit tests
Lambert et al. (2025); DeepSeek-AI et al. (2025); Team et al. (2025). Recently, RLVR has been
instrumental in developing reasoning-based LLMs such as OpenAI-o1 OpenAI et al. (2024) and
DeepSeek-R1 DeepSeek-AI et al. (2025).

3 BACKGROUND

GRPO. Group relative policy optimization Shao et al. (2024) is a reinforcement learning algorithm
used to fine-tune LLMs that replaces the value function in PPO training Schulman et al. (2017)
with an estimate derived from Monte Carlo samples instead. In particular, in each iteration of
training, GRPO constructs a group G of N completions, typically sampled from the current model,
and calculates the advantage for every completion as a relative comparison to the group. Let πθold

and πθ denote the model policies (LLM parameters, in our case) before and after taking a gradient
step. Given a task prompt PT and a set of completions sampled from the current model {oi : oi ∼
πθold}Ni=1, the GRPO loss objective is defined as

LGRPO(θ) =−
1∑N

i=1 |oi|

N∑
i=1

|oi|∑
t=1

[
min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− εlow, 1 + εhigh)Âi,t

)]
(1)

3

Preprint

where

ri,t(θ) =
πθ(oi,t | PT , oi,<t)

πθold(oi,t | PT , oi,<t)
, Âi,t = ri −mean({f(oi)}Ni=1)

are the policy ratio and advantage estimates, respectively, for each token in each completion, f(·) is
a reward function that provides a scalar score for each completion, clip(·, ·, ·) is a clipping function
to prevent large updates during optimization, and εlow/high are clipping hyperparameters.

On-, off-, and mixed-policy optimization. Typically, reinforcement learning (including GRPO)
operates in an on-policy manner, where new solutions are sampled using πθ (i.e., the policy being
trained) to estimate the loss for the next training step. On the other hand, some works have argued
that on-policy training may constrain learning to only the capabilities of the base LLM itself, result-
ing in echo chambers Zhao et al. (2025); Yue et al. (2025) that prevent novel task generalization.
This problem is further exacerbated in the sparse reward scenario, where the base model is unable
to generate solutions that elicit non-zero reward, thus leading to degenerate policy gradients. To ad-
dress this, off-policy optimization Levine et al. (2020) has been proposed as an effective strategy that
leverages previously collected expert demonstrations for training instead of online samples. How-
ever, a purely offline strategy can result in learning policies that are unable to generalize at inference
time Fujimoto et al. (2019); Kumar et al. (2019). Consequently, recent work Yan et al. (2025) shows
that a combination of online and offline samples, called mixed-policy optimization, can outperform
either strategy used in isolation.

4 MIGRATE: METHODOLOGY

The focus in this work is on finding optimal solutions with respect to a black-box objective function
f(·) under a finite sampling budget B. To this end, we are interested in using GRPO as a search
algorithm, wherein a single example query is used as the input for a search task across multiple
sampling iterations. The goal, then, is to learn query-specific parameters that shift the model’s
sampling distribution iteratively, improving the quality of solutions that are generated.2 Note that
throughout this work, we use LoRA fine-tuning Hu et al. (2022) instead of full-model training.

Overcoming sparse rewards in search. As described earlier, purely on-policy learning is often
unable to find an appropriate sampling distribution for a single query within a limited budget due to
sparse rewards, i.e., when solutions sampled from the current policy do not result in useful policy
gradients to make progress. At the same time, both off- and mixed-policy strategies require access
to known expert demonstrations, which we assume are not available in our setting. We, therefore,
present MIGRATE—a mixed-policy optimization strategy for GRPO that generates off-policy data
via (a) selecting high-performing solutions from the model’s own sampling history, and (b) sam-
pling variations from the neighborhoods of observed high-performing solutions. In each iteration,
MIGRATE combines new on-policy and off-policy samples to construct a group of completions G,
which is used to compute a policy gradient with respect to the loss function in Equation 1, until
either the optimal solution is found or the sampling budget is exhausted.

4.1 MIXED-POLICY GROUP CONSTRUCTION FOR SEARCH

Given a search task T and a corresponding task prompt PT for the LLM, our goal is to construct
a new group Gt composed of N completions in each search iteration t to compute a policy gradi-
ent via GRPO. We introduce two off-policy data selection techniques—greedy and neighborhood
sampling (NS)—which we combine with on-policy sampling to generate test-time training data.
Intuitively, both techniques are designed to bias policy gradients to exploit known high-quality so-
lutions sampled thus far, while on-policy sampling encourages exploration. Note that for a single
iteration, we limit the number of new completions sampled from the LLM, regardless of policy,
to N . In experiments, we find that the simultaneous application of greedy and NS off-policy data
selection (i.e., MIGRATE; Algorithm 1) results in the best performance.

2This is in contrast to the more typical setting of training a generalizable model with multiple examples.
See the appendix for a complete description of modifications we incorporate from previous work beyond the
original formulation from Shao et al. (2024).

4

Preprint

On-policy sampling. Let α (≤ N) be the number of completions sampled from the current policy
model, i.e., at timestep t, we generate on-policy completions (or observations) Oonline := {oi : oi ∼
πt−1
θ (· | PT)}αi=1 using temperature-based ancestral sampling.

Greedy sampling. Let D be a database of completions, which may be composed both of any
candidate solutions available a priori as well as all attempts sampled from the model in previ-
ous search iterations. In greedy off-policy data selection, if D ≠ ∅, we sample β (≤ N) known
completions from D that are high-quality. In particular, we first greedily select the top-k comple-
tions from D with respect to f(·) and then randomly sample β completions from the top-k, i.e.,
Ogreedy := {oi : oi ∼ topkf (D)}βi=1, where topkf (D) returns the k best completions from D with
respect to f .

Algorithm 1 Solution search with MIGRATE

Input: Task T , black-box function f , budget B
Parameters: GRPO group size N , α on-policy sam-
ples, β greedy samples, γ neighborhood samples
Output: Best solution obest

1: Initialize: Policy π0
θ ← LLM, task prompt PT ,

database D ← ∅, timestep t← 0, obest ← ∅
2: while |D| < B do
3: t← t+ 1
4: Oonline ← {oi : oi ∼ πt−1

θ (· | PT)}αi=1

5: Ogreedy ← {oi : oi ∼ topkf (D)}βi=1
6: PNS ← Build NS prompt using Ogreedy

7: ONS ← {oi : oi ∼ πt−1
θ (· | PNS)}γi=1

8: Gt ← Oonline ⊕Ogreedy ⊕ONS
9: D ← D ⊕Oonline ⊕ONS

10: obest ← argmaxoi∈D f(oi)
11: if obest is optimal then
12: return obest
13: end if
14: πt

θ ← Update using GRPO with Gt (Eq. 1)
15: end while
16: return obest

Neighborhood sampling. While greedy
sampling explicitly encourages the ex-
ploitation of high-quality samples, it is
limited to leveraging solutions that have
already been generated and may be prone
to optimizing for local optima Krish-
namurthy et al. (2024); Agarwal et al.
(2025a). To mitigate this, we incorpo-
rate a complementary off-policy sampling
strategy grounded in a continuity assump-
tion—namely, that small variations in so-
lutions yield small changes in quality. This
assumption motivates exploration within
neighborhoods of known high-quality can-
didates by prompting the model to gen-
erate stochastic variations of greedy sam-
ples, thereby producing new solutions that
may both provide useful variations for bet-
ter policy gradients as well as solutions
that may outperform previous samples. In
practice, we construct a single neighbor-
hood sampling prompt PNS composed of
all β greedy samples along with an in-
struction to generate γ (≤ N) solution
variations to construct ONS := {oi : oi ∼
πt−1
θ (· | PNS)}γi=1.

MIGRATE. To balance exploration and exploitation during test-time training with GRPO, MI-
GRATE integrates both off-policy techniques with on-policy sampling by combiningOonline,Ogreedy,
and ONS into a single group Gt, with the constraint that α + γ <= N in each iteration3 (see Al-
gorithm 1). We compute the loss on Gt with respect to the task prompt PT , irrespective of how the
sample was generated. While on-policy sampling encourages exploration of new solutions, greedy
sampling promotes exploitation by reusing high-quality completions from a running database, and
neighborhood sampling introduces structured exploration via local variations of the greedy samples.
Empirically, we find that this combination produces higher-quality search results than any single
strategy alone.

3We keep constant the number of new solutions sampled from the LLM for fair comparison with baselines.
In practice, we ensure that α+ β + γ = N to simplify our implementation.

5

Preprint

5 EXPERIMENTS

5.1 SEARCH TASKS

Following Agarwal et al., we evaluate MIGRATE by conducting experiments on three text-based
search tasks—Semantle (word search), Dockstring (molecule optimization), and ARC (hypothe-
sis+program search).

Semantle. Semantle Agarwal et al. (2025a) is a word-search task, where the goal is to identify a
held-out English word (e.g., “polyethylene”) within a limited number of guesses. The black-box
function used indicates how semantically close a guessed word is to the target, which is computed
using cosine similarities over SimCSE Gao et al. (2021) embeddings, following prior work. Each
search problem is initialized with a warmstart set of 20 words (randomly sampled from the word2vec
index Mikolov et al. (2013)) and corresponding black-box scores. We conduct evaluation using 10
hidden words and 5 warmstart sets for each of them, resulting in a total of 50 problem instances.

Dockstring. Garcı́a-Ortegón et al. provides a suite of challenging molecule optimization tasks
that reflect real-world problems in drug discovery. We focus on a multi-objective optimization task:
generating molecules (represented as SMILES strings Weininger (1988)) that simultaneously maxi-
mize druglikeness and binding affinity, quantified by QED Bickerton et al. (2012) and negative Vina
scores Trott & Olson (2010), respectively. We use a scalarized multi-objective black-box function
(Equation 2) that places a greater weight on Vina scores than QED, reflecting the common prior-
itization of binding affinity over druglikeness when evaluating a molecule’s drug efficacy Hughes
et al. (2011); Wenlock et al. (2003). Following prior works Yuksekgonul et al. (2024); Agarwal et al.
(2025a), we run evaluations for 58 pharmaceutically-relevant protein targets.

ARC. The Abstraction and Reasoning Corpus (ARC) Chollet (2019) is a benchmark of grid-based
puzzles that involves inferring the transformation logic from a small set of input-output grid pairs
and applying it to a held-out test grid. Recent methods improve performance via data augmentation
with invertible transformations Akyürek et al. (2025) or by combining program synthesis with trans-
ductive strategies Li et al. (2024). We take an inductive hypothesis + program search approach Wang
et al. (2024), where natural language transformation algorithms are hypothesized and translated into
Python programs. We report two accuracy metrics: pass@2, which measures whether any of the
top-2 common outputs from the programs that solve the train set matches the test grid, and oracle,
which provides credit if any of the sampled programs correctly solves the test grid. Note that oracle
accuracy reflects a coarse ability to find a distribution that can generate the correct solution.

We conduct our experiments on two dataset versions: ARC-Full and ARC-Small. ARC-Full in-
cludes all 400 tasks from the ARC evaluation set Chollet et al. (2024), while ARC-Small is a subset
consisting of 54 tasks with grids up to a maximum of 64 cells. We create this small subset to measure
variance across search methods via repeat runs. Note that we ensure ARC-Small maintains the same
difficulty distribution as ARC-Full4. To guide search, we follow prior work Agarwal et al. (2025a)
and use a Hamming-distance based black-box function.

5.2 BASELINES

Inference-only. We evaluate three inference-only sampling strategies for optimization tasks:

• Random, which generates completions by sampling directly from the base model using only
the task prompt;

• Neighborhood Sampling (NS), which samples completions from a prompt that includes top-
performing solutions from previous iterations to encourage local exploration; and

• OPRO Yang et al. (2024), which generates completions using a prompt that builds a trajectory
of top-performing solutions as a textual gradient to discover new solutions that may improve
performance.

4Due to hardware limitations, we truncate prompts at 2048 tokens in all experiments. As a result, only 200
out of 400 tasks in ARC-Full could be evaluated with their full context.

6

Preprint

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(a) Semantle

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.3

0.4

0.5

0.6

0.7

0.8

S
ca

la
ri

ze
d

O
ve

ra
ll

S
co

re
(↑

)

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(b) Dockstring

0 200 400 600 800 1000

Programs Sampled

0%

10%

20%

30%

40%

50%

S
ol

ve
R

at
e

Random

NS

OPRO

GRPO

GRPO–Greedy

MiGrATe

(c) ARC-Small

0 200 400 600 800 1000

Programs Sampled

0%

5%

10%

15%

20%

S
ol

ve
R

at
e

Random

NS

OPRO

GRPO

GRPO–Greedy

MiGrATe

(d) ARC-Full

Figure 2: Best-so-far performance results. (a) On Semantle, MIGRATE outperforms all baselines,
improving the second-best (NS) by 25%. (b) In Dockstring, MIGRATE surpasses baselines after 50
proposals. (c) On ARC-Small, MIGRATE upper-bounds baselines across budget levels. (d) On
ARC-Full, MIGRATE solves more tasks than baselines at the full budget.

Test-time training. Beyond inference-only methods, we evaluate three variants of our GRPO-
based test-time training approach:

• GRPO is the base algorithm, using a fixed task prompt and sampling N completions on-policy
from the current model (i.e., α = N , β = 0, γ = 0).

• GRPO-Greedy augments GRPO by using greedy off-policy sampling to select β previous com-
pletions to place in the group at each iteration (i.e., α, β > 0 and γ = 0).

• MIGRATE is our full method, combining on-policy exploration, greedy sampling of top com-
pletions, and neighborhood sampling for local exploration (i.e., each of α, β, γ > 0).

We provide complete details of our experiment setting in the appendix, including the values used
for α, β, and γ for different tasks. We also provide a sensitivity analysis of these choices on the
Semantle task in the Results section.

Additional baselines. We also evaluate MIGRATE (OPRO), a variant of MIGRATE that replaces
the neighborhood sampling (NS) prompt with the OPRO prompting strategy for local exploration.
Additionally, we explore an alternative strategy for selecting Ogreedy using an islands-based evolu-
tionary search method. Please see the appendix for both sets of results.

Models. We present our main results on Semantle and Dockstring using Llama-3.2-3B-Instruct
AI@Meta (2024). For ARC, we use Llama-3.1-ARC-Potpourri-Induction-8B Li et al. (2024), a
fine-tuned version of Llama-3.1-8B-Instruct AI@Meta (2024) trained on synthetic Python programs
that solve ARC training tasks. The latter decision is driven by the bespoke nature of the ARC
challenge, where base models are entirely unable to generate valid solutions.

6 RESULTS AND DISCUSSION

MIGRATE outperforms both inference-only and TTT baselines. Across tasks, we run each
method until either the correct solution is found or a pre-defined budget of solution candidates (1000
for Semantle, 200 for Dockstring, and 1024 for ARC) is proposed and evaluated.5 We report our
results on each search task in Table 1 and provide a best-so-far plot to trace search behavior across
sampling budgets in Figure 2. We find that mixed-policy GRPO via MIGRATE outperforms each
inference-only baseline as well as the TTT-based ablations.

In Semantle, our results show that MIGRATE outperforms baselines by ≥ 25 percentage points.
Notably, as shown in Figure 2a, across the 50 problem instances averaged over 3 repeat runs, MI-
GRATE surpasses its inference-only counterpart NS after 200 guesses (∼20 MIGRATE iterations),
demonstrating the benefit of performing explicit gradient updates in finding sampling distributions
with higher-quality solutions versus using a purely in-context optimization strategy.

In Dockstring, we allocate a budget of 200 molecule proposals for each method and report per-
formance over 3 repeat runs. Table 1 shows that MIGRATE synthesizes molecules with higher

5We report all configuration parameters for MIGRATE and other baselines in the appendix.

7

Preprint

Semantle Dockstring

Method % Found QED (↑) Vina Score (↓) Overall Score (↑)

Random 2.00 ± 1.63 0.91 ± 0.00 −9.92 ± 0.15 0.73 ± 0.00
NS 45.30 ± 2.49 0.87 ± 0.01 −9.65 ± 0.21 0.71 ± 0.00
OPRO 40.70 ± 1.89 0.90 ± 0.00 −9.94 ± 0.06 0.74 ± 0.00
GRPO 10.00 ± 4.32 0.91 ± 0.00 −10.09 ± 0.05 0.73 ± 0.00
GRPO-Greedy 12.70 ± 0.94 0.90 ± 0.01 −10.80 ± 0.19 0.77 ± 0.00

MIGRATE 71.30 ± 4.11 0.90 ± 0.00 −11.00 ± 0.07 0.79 ± 0.00

ARC-Small ARC-Full

Method Pass@2 (%) Oracle (%) Pass@2 (%) Oracle (%)

Random 48.20 ± 1.51 57.41 ± 0.87 20.75 28.00
NS 48.15 ± 0.00 55.56 ± 1.51 20.25 29.50
OPRO 50.62 ± 1.75 59.26 ± 0.00 20.75 27.75
GRPO 46.91 ± 3.81 55.56 ± 6.90 17.75 27.00
GRPO-Greedy 48.15 ± 2.62 56.17 ± 7.26 21.00 30.00

MIGRATE 51.23 ± 3.49 62.35 ± 0.87 22.25 30.00

Table 1: Search performance. Except ARC-Full, results are averaged over three random seeds with
standard deviations reported. The top-2 results in each column are marked with bold and underline,
respectively. MIGRATE outperforms on all but one metric.

scalarized scores (according to Equation 2), i.e., jointly optimizing for QED and Vina. Further, in
Figure 2b, we see that MIGRATE outperforms all baselines on average after 50 molecule proposals.
Additionally, we show the search trace of different methods in Figures 3a and 3b.

In ARC, we report performance over 3 repeat runs on ARC-Small and a single run on ARC-Full
due to hardware constraints. For each run, we allocate a search budget of 1024 programs. From
Figure 2c, Figure 2d, and Table 1, we find that MIGRATE does outperform baselines but demon-
strates more modest improvement. We further find that MIGRATE solves all but two tasks that the
baselines also solve.

TTT methods produce qualitatively different solutions than inference-only methods. In Se-
mantle, across runs, we find that MIGRATE is the only method that is able to find all 10 hidden
words. Furthermore, we observe that only MIGRATE and its ablations are able to optimize for
certain words, e.g., “birthstone”, indicating an ability to effectively navigate the unique search land-
scape for this word. In Dockstring, as shown in Figure 3a, we find that the optimization trajectories
of the best-performing SMILES strings found using TTT methods (MIGRATE and its ablations)
show a distinct pattern that optimize for Vina scores more heavily than those from inference-only
methods, which prefer higher QED and are unable to synthesize molecules with lower than −10
kcal/mol Vina. While MIGRATE is indeed capable of generating molecules with high QED scores
(> 0.8), optimization prefers to reduce QED to below 0.3 in exchange for better Vina scores. This
also follows from the scalarized multi-objective function in Equation 2, which attaches a stronger
weight to Vina scores than QED.

What search behaviors are observed with MIGRATE? To understand this, we analyze the qual-
ity of samples generated by MIGRATE and compare them to those from the inference-only NS
baseline in Figure 4. More specifically, we measure the relative difference between the black-box
score of each solution sampled by both methods and the best-so-far performance when that solution
was sampled during optimization. We then compare the distributions of these differences between
the two methods. On Semantle and ARC, search with MIGRATE demonstrates the ability to it-
eratively improve upon its previously best-found solution in contrast to the behavior seen with the
inference-only strategy, which often samples solutions that show no improvement. In Dockstring, on
the other hand, we see MIGRATE produce a higher number of invalid molecules than inference-only
approaches, indicating broader exploration of the solution space, as also shown in Figures 3a and
3b. We find that many of the proposed molecules are longer and more complex SMILES strings,
evidenced by a 44% increase in average length. Despite proposing more invalid molecules, however,
MIGRATE finds molecules that improve upon the best-so-far with larger performance improvements
than with inference-only.

8

Preprint

0.3 0.4 0.5 0.6 0.7

Druglikeness (QED) (↑)

−11

−10

−9

−8

−7

−6

−5

−4

B
in

di
ng

A
ffi

ni
ty

(v
in

a
sc

or
e)

(↓
)

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

Trace start

Trace end

(a) Dockstring search trace

0.0 0.2 0.4 0.6 0.8 1.0

Druglikeness (QED)

−14

−12

−10

−8

−6

−4

B
in

d
in

g
A

ffi
n

it
y

(v
in

a
sc

or
e)

Protein Target: KDR

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(b) SMILES distribution for KDR

Figure 3: Dockstring search behavior. (a) Vina and QED scores for best molecules found as
search progresses. Each trace starts from 3 diverse fragments (acetamide, pentane, and benzene).
(b) Distribution of binding affinity and druglikeness for KDR target. MIGRATE explores a broader
region of chemical space, including low-affinity, low-druglikeness areas ignored by baselines.

Inference–Only MiGrATe

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

P
er

ce
nt

D
iff

er
en

ce
(%

)

(a) Semantle

Inference–Only MiGrATe

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

125%

150%

P
er

ce
nt

D
iff

er
en

ce
(%

)

(b) Dockstring

Inference–Only MiGrATe

-100%

0%

-50%

0%

50%

100%

150%

200%

250%

P
er

ce
nt

D
iff

er
en

ce
(%

)

(c) ARC

Figure 4: Performance relative to the best-so-far. Percentage difference between samples from
inference-only NS and MIGRATE with their best-so-far scores during optimization. MIGRATE
produces more samples close to or above the best-so-far than NS. In Dockstring, despite MIGRATE
producing more invalid molecules, its outliers show larger gains in performance than NS. Note that
due to a high proportion of invalid molecules and programs, we omit samples with 0 rewards.

Sensitivity analysis of α, β, γ. In Figures 7 and 8, we show how varying the number of online,
greedy, and NS samples impacts search performance with MIGRATE. On Semantle, configurations
using only neighborhood samples or a large proportion of greedy samples outperform those with
online samples, suggesting that off-policy variants can perform effective search. Dockstring benefits
from having a mix of sample types, with the best results from a balanced configuration, indicating the
need for a strategy that both explores and exploits the search space. In contrast, ARC-Small gives an
example of a domain where a higher proportion of online samples is important for improved search.
These results highlight both the flexibility of MIGRATE to apply different search strategies and the
importance of tuning the mixed-policy composition of MIGRATE for each domain.6

7 CONCLUSION

We introduced MIGRATE, a method for online test-time training of LLMs that enables efficient
search in black-box optimization tasks without requiring handcrafted training data. By leveraging
Group Relative Policy Optimization (GRPO) along with a novel mixed-policy group construction
strategy—comprising on-policy, greedy, and neighborhood sampling—MIGRATE effectively bal-
ances exploration and exploitation. Our experiments across three text-based domains demonstrate
the efficacy of MIGRATE to improve LLM-based search. Future work may include scaling online
TTT to multi-step decision-making and integrating stronger uncertainty-aware acquisition strategies
to further improve sample efficiency.

6Additional analyses: (a) evaluation of whether TTT weights from solved tasks can help bootstrap search
for related unsolved tasks; (b) performance of MIGRATE with NS swapped out for an alternative local structure
sampling technique OPRO Yang et al. (2024) (see Appendix B).

9

Preprint

REFERENCES

Dhruv Agarwal, Rajarshi Das, Sopan Khosla, and Rashmi Gangadharaiah. Bring your own KG:
Self-supervised program synthesis for zero-shot KGQA. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL 2024,
pp. 896–919, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-naacl.57. URL https://aclanthology.org/2024.
findings-naacl.57/.

Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
Rashmi Gangadharaiah. Searching for optimal solutions with LLMs via bayesian optimization.
In The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=aVfDrl7xDV.

Dhruv Agarwal, Bodhisattwa Prasad Majumder, Reece Adamson, Megha Chakravorty,
Satvika Reddy Gavireddy, Aditya Parashar, Harshit Surana, Bhavana Dalvi Mishra, Andrew Mc-
Callum, Ashish Sabharwal, et al. Open-ended scientific discovery via bayesian surprise. arXiv
preprint arXiv:2507.00310, 2025b.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning, 2025.
URL https://arxiv.org/abs/2411.07279.

Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning. Lazy
learning, pp. 11–73, 1997.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Francois Chollet, Mike Knoop, Bryan Landers, Greg Kamradt, Hansueli Jud, Walter Reade,
and Addison Howard. Arc prize 2024. https://kaggle.com/competitions/
arc-prize-2024, 2024. Kaggle.

William S Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the
American statistical association, 74(368):829–836, 1979.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/
unslothai/unsloth.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language
queries over knowledge bases. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 9594–9611, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.755. URL
https://aclanthology.org/2021.emnlp-main.755/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,

10

https://aclanthology.org/2024.findings-naacl.57/
https://aclanthology.org/2024.findings-naacl.57/
https://openreview.net/forum?id=aVfDrl7xDV
https://openreview.net/forum?id=aVfDrl7xDV
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2411.07279
https://kaggle.com/competitions/arc-prize-2024
https://kaggle.com/competitions/arc-prize-2024
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://aclanthology.org/2021.emnlp-main.755/

Preprint

Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jordan S. Ellenberg, Cristofero S. Fraser-Taliente, Thomas R. Harvey, Karan Srivastava, and An-
drew V. Sutherland. Generative modeling for mathematical discovery, 2025. URL https:
//arxiv.org/abs/2503.11061.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Miguel Garcı́a-Ortegón, Gregor NC Simm, Austin J Tripp, José Miguel Hernández-Lobato, Andreas
Bender, and Sergio Bacallado. Dockstring: easy molecular docking yields better benchmarks for
ligand design. Journal of chemical information and modeling, 62(15):3486–3502, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.11061
https://arxiv.org/abs/2503.11061

Preprint

Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,

12

Preprint

Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick,
and Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as
text. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=vN9fpfqoP1.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=CNL2bku4ra.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
Active fine-tuning of LLMs. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=NS1G1Uhny3.

JP Hughes, S Rees, SB Kalindjian, and KL Philpott. Principles of early drug discovery.
British Journal of Pharmacology, 162(6):1239–1249, 2011. doi: https://doi.org/10.1111/
j.1476-5381.2010.01127.x. URL https://bpspubs.onlinelibrary.wiley.com/
doi/abs/10.1111/j.1476-5381.2010.01127.x.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alan Aspuru-Guzik, and
Geoff Pleiss. A sober look at LLMs for material discovery: Are they actually good for Bayesian
optimization over molecules? In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 25603–25622. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/kristiadi24a.html.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris

13

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NS1G1Uhny3
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1476-5381.2010.01127.x
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1476-5381.2010.01127.x
https://proceedings.mlr.press/v235/kristiadi24a.html
https://proceedings.mlr.press/v235/kristiadi24a.html

Preprint

Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, Wei-Long Zheng, Zenna Tavares, Yewen Pu, and
Kevin Ellis. Combining induction and transduction for abstract reasoning, 2024. URL https:
//arxiv.org/abs/2411.02272.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=OOxotBmGol.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeets-
ingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. Dis-
coverybench: Towards data-driven discovery with large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=vyflgpwfJW.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace

14

https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.02272
https://arxiv.org/abs/2411.02272
https://openreview.net/forum?id=OOxotBmGol
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://openreview.net/forum?id=vyflgpwfJW
https://openreview.net/forum?id=vyflgpwfJW

Preprint

Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian opti-
mization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341, 2023.

Bojana Ranković and Philippe Schwaller. Bochemian: Large language model embeddings for
bayesian optimization of chemical reactions. In NeurIPS 2023 Workshop on Adaptive Experi-
mental Design and Active Learning in the Real World, 2023. URL https://openreview.
net/forum?id=A1RVn1m3J3.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International conference
on machine learning, pp. 9229–9248. PMLR, 2020.

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming

15

https://arxiv.org/abs/2412.16720
https://openreview.net/forum?id=A1RVn1m3J3
https://openreview.net/forum?id=A1RVn1m3J3
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052

Preprint

Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin
Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi,
Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong,
Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao,
Weimin Xiong, Weiran He, Weixiao Huang, Weixin Xu, Wenhao Wu, Wenyang He, Xianghui
Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles,
Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng
Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang,
Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang,
Ziyao Xu, Zonghan Yang, and Zongyu Lin. Kimi k1.5: Scaling reinforcement learning with llms,
2025. URL https://arxiv.org/abs/2501.12599.

Dung Thai, Dhruv Agarwal, Mudit Chaudhary, Wenlong Zhao, Rajarshi Das, Jay-Yoon Lee, Han-
naneh Hajishirzi, Manzil Zaheer, and Andrew McCallum. Machine reading comprehension using
case-based reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 8414–8428, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.564.
URL https://aclanthology.org/2023.findings-emnlp.564/.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
G7UtIGQmjm.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Mark C Wenlock, Rupert P Austin, Patrick Barton, Andrew M Davis, and Paul D Leeson. A com-
parison of physiochemical property profiles of development and marketed oral drugs. J. Med.
Chem., 46(7):1250–1256, March 2003.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Haizi Yu, Igor Mineyev, Lav R Varshney, and James A Evans. Learning from one and only one shot.
npj Artificial Intelligence, 1(1):13, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-
source llm reinforcement learning system at scale, 2025b. URL https://arxiv.org/abs/
2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

16

https://arxiv.org/abs/2501.12599
https://aclanthology.org/2023.findings-emnlp.564/
https://github.com/huggingface/trl
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

Preprint

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

A APPENDIX A

A.1 EXPERIMENTAL SETTINGS

Semantle. The black-box function we use is the cosine similarity of vector representations generated
using the SimCSE Gao et al. (2021) sentence embedding model, where the score for a proposed word
x for a hidden target word y is computed by comparing the embeddings for the sequences ”What is
a {x}?” and ”What is a {y}?”. The number of warmstart candidates is 20. Our main results with
NS and MIGRATE selectsOgreedy by uniformly sampling among the top-3 completions found so far
according to their black-box scores.

In MIGRATE, we execute GRPO for 100 generation steps where we sample a batch of 10 words in
each step for a total sampling budget of 1000 words. In each step, we sort the generated batch of
words by their scores and construct a group of 5 completions, each consisting of 2 words each. Each
completion is assigned the maximum score of the two words as its reward.

For the Random baseline, we sample 1000 words using the task prompt. For the NS baseline, we
sample 10 words using the NS prompt for 100 iterations. Similarly, for the OPRO baseline, we also
sample 10 words using the OPRO prompt for 100 iterations. We provide, in-context, the top-10
words found so far for every OPRO-based method.

Dockstring. The black-box function we use is a linear function of the binding affinity (Vina) and
druglikeness (QED). We use RDKit’s MolFromSmiles to sanitize a given generated SMILES string.
If this process fails due to an invalid format structure or molecule, we assign the generated molecule
a score of 0. If the molecule is valid, we compute the QED and Vina scores on the given protein
target. We then compute the overall score of these two metrics as follows:

soverall(molecule, protein) = 1−N (Vina(molecule, protein) + (1− QED(molecule)) (2)

Where N denotes min-max normalization to the range [0,1]. The QED score is bounded between 0
and 1, and we assume the Vina score to be between 0 and -13.0 kcal/mol. In practice, the binding
affinity is a much higher priority than the druglikeness. Given our equation and the value ranges for
computing soverall, our black-fox function accurately emphasizes the Vina score about 10 times more
than the QED score.

For the Random baseline, we sample 200 molecules using the task prompt. For the NS baseline, we
sample 3 molecules using the task prompt and 2 molecules using the NS prompt in each iteration
for 40 iterations. We select Ogreedy from the top-1 molecule found so far in NS and MIGRATE. For
the OPRO baseline, we sample 5 molecules using the OPRO prompt for 40 iterations. We provide,
in-context, the top-5 molecules proposed so far for every OPRO-based method.

ARC. The black-box function we use is a hamming-distance based metric. We run all input grids
with the sampled program and compute the proportion of cells in the ground-truth grid that matches
the output grid. We assign a reward of 0 if the program does not terminate within 10 seconds of
execution. During training, the reward is given by averaging the score across all training input grids
of the given ARC task. If the output grid is larger than the ground-truth, then we assign a score of 0.

For the Random baseline, we sample 1024 programs using the task prompt. For the NS baseline, we
sample 12 programs using the task prompt and 4 programs using the NS prompt for 64 iterations.
We note that this Random baseline is equivalent to the main evaluations ran by Li et al. Additionally,
our TTT baselines on ARC in the inductive setting are not an entirely fair comparison to prior works

17

Preprint

Hyperparameter Value
Model Llama 3.2 3B Instruct

Grattafiori et al. (2024)
Learning rate 1e-5
Group size 5
LoRA rank 64
LoRA alpha 16
Training steps 100
Iterations per step 2

GRPO [α, γ, β] [5, 0, 0]
GRPO-Greedy [α, γ, β] [4, 0, 1]
MIGRATE [α, γ, β] [0, 4, 1]

Table 2: MIGRATE hyperparameters for Semantle

Hyperparameter Value
Model Llama 3.2 3B Instruct

Grattafiori et al. (2024)
Learning rate 5e-5
Group size 5
LoRA rank 64
LoRA alpha 16
Training steps 40
Iterations per step 1

GRPO [α, γ, β] [5, 0, 0]
GRPO-Greedy [α, γ, β] [4, 0, 1]
MIGRATE [α, γ, β] [2, 2, 1]

Table 3: MIGRATE hyperparameters for Dockstring

that do TTT in the transductive setting. We select Ogreedy as the top-1 program found so far for
both NS and MIGRATE. Similarly, for the OPRO baseline, we sample 12 programs using the task
prompt and 4 programs using the OPRO prompt for 64 iterations. Due to hardware limitations and to
maintain a fair comparison with MIGRATE, we only provide one program in-context for the OPRO
prompt.

A.2 GRPO FORMULATION

We remove the KL term in the original GRPO objective. Following DAPO Yu et al. (2025b), we
utilize token-level normalization, which assigns more balanced rewards to individually generated
tokens—alleviating the bias towards longer responses. We also set εlow = 0.2 and εlow = 0.28
which DAPO finds to promote exploration of low-probability tokens that perform well. Dr. GRPO
Liu et al. (2025) also divides the sum of loss by a constant instead of the total sequence length
to completely remove any completion length bias. Although we did not use this formulation in
our experiments, there should be no substantial differences since there is not high variability in the
solution lengths in the domains we studied. Following Dr. GRPO, we do not scale the advantage by
the standard deviation of the group’s rewards. By doing so, we avoid biasing weight optimization on
groups that perform extremely well or poorly on a given prompt. While our online prompt always
remains constant, this bias is relevant for our NS prompt which can vary across iterations.

A.3 COMPUTATIONAL RESOURCES

All experiments were conducted on a cluster of NVIDIA GPUs. We utilize a mixture of A100
(40GB and 80GB), L40S, and A40 GPUs. TTT methods on ARC-Full were only ran with A100

18

Preprint

Hyperparameter Value
Model BARC Li et al. (2024)
Learning rate 1e-5
Group size 16
LoRA rank 128
LoRA alpha 32
Training steps 64
Iterations per step 1

GRPO [α, γ, β] [16, 0, 0]
GRPO-Greedy [α, γ, β] [15, 0, 1]
MIGRATE [α, γ, β] [11, 4, 1]

Table 4: MIGRATE hyperparameters for ARC

(80GB) GPUs due to the higher memory requirements. Our implementation of MIGRATE is based
on the TRL 0.19.0 implementation of GRPO from Hugging Face von Werra et al. (2020). We
also utilize Unsloth Daniel Han & team (2023) and vLLM Kwon et al. (2023) to enable higher
inferencing throughput and lower memory usage. The average runtime for MIGRATE on each
Semantle problem was 93 seconds on an A100 GPU. The average runtime for MIGRATE across all
GPU types on each molecule optimization task was 7.5 minutes. The average runtime for MIGRATE
on each ARC task with early stopping is 51 minutes on an A100 GPU.

B APPENDIX B: ADDITIONAL EXPERIMENTS

B.1 ISLAND-BASED EVOLUTION ALGORITHM

We implement an island-based evoluationary algorithm as an alterative to top-k for selectingOgreedy.
We created a database inspired by Ellenberg et al. (2025) to store generated solutions and sample
them for constructing neighborhood sampling. The island model organizes the solutions into isolated
islands of solutions that are evolved independently.

At every training step, we iterate to another “island” in the database in a cyclic order. We then
sample a solution stored at this island to construct our neighborhood sampling prompt. We note
that unlike prior works Ellenberg et al. (2025); Surina et al. (2025) we do not construct additional
subclusters of solutions within each island. This was done due to the low sampling constraints of
our experiments but can also be seen as using a single cluster per island. Sampling from an island is
carried out by an exploitation strategy with probability p and an exploration strategy with probability
1 − p. With the exploitation strategy, we randomly select a top solutions on the island that is also
considered a globally top-k solution across all islands. If the island does not have a solution that is in
the top-k solution for all islands then we fall back on the exploration strategy. With the exploration
strategy, we randomly select among the top solutions on the island that are not one of the globally
top-k solutions.

We periodically migrate a percentage of the top-performing solutions from each island to their neigh-
boring islands according to a ring topology. This maintains a balance of exploring diverse solutions
in isolation and preventing the algorithm from spending too much time on low-performing solutions.

We conduct a comparison of using NS and MIGRATE with three different strategies for selecting the
solution to sample neighbors from: Top-1, Top-3, and Evolution. For each of these configurations
we use 10 neighborhood samples, 0 online samples, and 0 greedy samples. Fig. 5 shows that Top-3
outperforms Top-1 and that using our evolution-based strategy outperforms Top-3 in both NS and
MIGRATE methods. While Top-3 shows the better initial gains in both NS and MIGRATE, the
evolution-based strategy narrowly outperforms it by 1000 samples. Much like our other results in
Table. 1, we also observe that the MIGRATE equivalent of each NS variation performs better –
reinforcing the pattern that TTT improves search performance.

19

Preprint

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

NS (Top-1)

NS (Top-3)

NS (Evolution)

MiGrATe (Top-1)

MiGrATe (Top-3)

MiGrATe (Evolution)

Figure 5: Comparing selection methods for NS. Evolution-based selection shows slower initial
gains but results in more consistent improvements than using a top-k sampling strategy–resulting in
better final performances.

B.2 CAN RELATED TASKS BOOTSTRAP SEARCH?

We investigate whether fine-tuned weights from TTT can generalize to other tasks. After running
MIGRATE on every task, we perform TTT again on unsolved tasks and bootstrap the method with
the learned weights of its “nearest” solved task.

In this experiment, we attempt to solve ARC tasks that were not solved by MIGRATE. For each
unsolved task, we determine its “nearest” solved task by evaluating this task using the solution
program from every solved task. We pass the training inputs of the unsolved task into each program
and determine the nearest solved task to be the one whose solution program achieve the highest
reward from our hamming distance-based reward function.

Once the nearest solved task is identified, we use its fine-tuned weights from MIGRATE as the
initializing point for solving the unsolved task. This procedure aims to transfer inductive biases
that may have been learned from structurally similar tasks, enabling the model to efficiently explore
more viable programs on the unsolved task. This tests whether there is an advantage to initializing
search via TTT from a more informed starting point on problems where starting with the base model
fails.

We see marginal improvements from bootstrapping search with learned weights from MIGRATE.
Fig. 6 shows that initializing Random Sampling and MIGRATE with the nearest solved task’s
weights allowed each respective method to solve tasks that were initially unsolvable by the base
model. Notably, bootstrapping Random Sampling with nearest weights was able to solve more tasks
than executing MIGRATE on the base model.

B.3 TRADEOFF WITH VARYING α AND γ SAMPLES

We conduct experiments on Semantle, Dockstring, and ARC-Small to investigate the tradeoff in-
volved in varying the ratio of online to neighborhood samples within a GRPO group in MIGRATE.
Throughout these experiments, we fix the number of greedy samples at β = 1. The results in Fig. 7
reveals that the optimal configuration of online sand NS samples vary across domains. Particu-
larly, Semantle benefits from more NS samples, Dockstring performs the best with an equal ratio
of samples, while ARC prefers a higher proportion of online samples. These results highlights the
importanced of tuning α and γ when applying MIGRATE to different domains.

B.4 VARYING β SAMPLES

We explore varying the number of greedy samples on Semantle. In these experiments, we run
MIGRATE with α = 0 onlines amples, β greedy samples, and N − β neighborhood sampless.
As shown in Fig. 8, performance remains relatively similar over β = 0, 1, 5, 10 with a small trend

20

Preprint

Random@Base Random@Nearest-TTT MiGrATe@Base MiGrATe@Nearest-TTT
0%

5%

10%

15%

20%

25%

30%

35%

S
ol

ve
R

at
e

20.75%

23.50%
22.25%

24.75%

28.00%

33.00%

30.00%

35.25%

ARC Accuracy

Pass@2 Accuracy

Oracle Accuracy

Figure 6: Bootstrapping with nearest weights on ARC-Full. Bootstrapping Random and MI-
GRATE with initial weights learned from one round of MIGRATE shows slight improvement on
total tasks solved.

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

MiGrATe (α = 9, γ = 0)

MiGrATe (α = 4, γ = 5)

MiGrATe (α = 0, γ = 9)

(a) Semantle

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.3

0.4

0.5

0.6

0.7

0.8

S
ca

la
ri

ze
d

O
ve

ra
ll

S
co

re
(↑

)

MiGrATe (α = 4, γ = 0)

MiGrATe (α = 2, γ = 2)

MiGrATe (α = 0, γ = 4)

(b) Dockstring

0 200 400 600 800 1000

Programs Sampled

0%

10%

20%

30%

40%

50%

S
ol

ve
R

at
e

MiGrATe (α = 15, γ = 0)

MiGrATe (α = 11, γ = 4)

MiGrATe (α = 7, γ = 8)

MiGrATe (α = 3, γ = 12)

(c) ARC-Small

Figure 7: Varying α and γ. We vary the number of online and NS samples per group in MIGRATE.
(a) On Semantle, we found that the strategy of using no online samples to be the most successful
by a significant margin. (b) On Dockstring, we found that using only NS samples yield better
performances at smaller budgets and a configuration of equal amounts of online and NS samples to
achieve the best final performance. (c) On ARC-Small, we found the mixed configuration of α = 11
and γ = 4 to perform the best.

of better performance with smaller β. In tandem with the results on varying γ, this supports the
potential of more off-policy methods of performing TTT with GRPO.

Semantle Dockstring ARC-Small

Method % Found QED (↑) Vina Score (↓) Overall Score (↑) Pass@2 (%) Oracle (%)

NS 45.30± 2.49 0.87± 0.01 −9.65± 0.21 0.71± 0.00 48.15± 0.00 55.56± 1.51
OPRO 40.70± 1.89 0.90± 0.00 −9.94± 0.06 0.74± 0.00 50.62± 1.75 59.26± 0.00

MIGRATE 71.30 ± 4.11 0.90 ± 0.00 −11.00 ± 0.07 0.79 ± 0.00 51.23 ± 3.49 62.35 ± 0.87
MIGRATE (OPRO) 65.3%± 2.49 0.90 ± 0.00 −10.80± 0.10 0.78± 0.00 44.44%± 3.02 55.56± 0.04

Table 5: Comparing Prompt Optimization Techniques. We compare the inference-only and MI-
GRATE (TTT) performance of different prompt optimization techniques. All results are averaged
over three random seeds, with the standard deviation reported. The best result in each column is
marked in bold and the second best result is underlined. MIGRATE achieves the best performance
across all metrics and ties with MIGRATE (OPRO) on optimizing QED for Dockstring. Notably,
OPRO beats NS in every metric with the exception of accuracy on Semantle.

21

Preprint

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

MiGrATe (β = 0)

MiGrATe (β = 1)

MiGrATe (β = 5)

MiGrATe (β = 10)

Figure 8: Comparing β on Semantle. MIGRATE shows a bias towards smaller β for better perfor-
mance on Semantle.

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

NS

OPRO

MiGrATe

MiGrATe (OPRO)

(a) Semantle

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.3

0.4

0.5

0.6

0.7

0.8

S
ca

la
ri

ze
d

O
ve

ra
ll

S
co

re
(↑

)

NS

OPRO

MiGrATe

MiGrATe (OPRO)

(b) Dockstring

0 200 400 600 800 1000

Programs Sampled

0%

10%

20%

30%

40%

50%

S
ol

ve
R

at
e

NS

OPRO

MiGrATe

MiGrATe (OPRO)

(c) ARC-Small

Figure 9: Comparing Prompt Optimization Techniques. MIGRATE (OPRO) shows similar per-
formance to MIGRATE on Semantle and Dockstring and noticeably worse performance on ARC-
Small.

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.4

0.5

0.6

0.7

0.8

0.9

D
ru

gl
ik

en
es

s
(Q

E
D

)
(↑

)

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(a) Best-so-far QED

0 25 50 75 100 125 150 175 200

Molecules Proposed

−11

−10

−9

−8

−7

−6

−5

−4

−3

B
in

d
in

g
A

ffi
n

it
y

(v
in

a
sc

or
e)

(↓
)

Random

NS

GRPO

GRPO-Greedy

MiGrATe

MiGrATe (OPRO)

(b) Bset-so-far Vina

Figure 10: QED and Vina Score plots for Dockstring.

22

Preprint

B.5 ALTERNATIVE LOCAL STRUCTURE SAMPLING IN MIGRATE?

We experiment with the alternative of using OPRO in place of neighborhood sampling (NS) in
MIGRATE. Our results in Table. 5 and Fig. 9 show similar results between MIGRATE and MI-
GRATE (OPRO) on Dockstring and more favorable results towards MIGRATE on Semantle and
ARC-Small. Compared to other baselines in Table 1, MIGRATE (OPRO) only underperforms rel-
ative to MIGRATE on Semantle and Dockstring. Notably, on ARC-Small, incorporating TTT into
OPRO substantially degrades performance compared to inference-only OPRO. We also observe that
OPRO achieves better performance than NS across most metrics. The varying performance of MI-
GRATE (OPRO) across domains suggests that NS is more compatible than OPRO with MIGRATE.
In addition, the greater improvement achieved by using NS over OPRO suggests that the NS strat-
egy of generating diverse variations may be better suited to TTT than OPRO, which focuses more
on direct improvement of previous solutions.

23

Preprint

C APPENDIX C: LLM PROMPTS

C.1 SEMANTLE: TASK PROMPT

Your task is to guess a hidden word from the English
dictionary. Stick to proper, single-word English words.
Now, guess exactly n=%s new word(s) that could be the
hidden word. Be creative! (Note: give only a list of word(s)
in the provided JSON format, e.g. "response": ["word1",
"word2",...])

C.2 SEMANTLE: NEIGHBORHOOD SAMPLING PROMPT

Your task is to guess words related to a word from the
English dictionary. Stick to proper, single-word English
words. Now, guess exactly n=%s new word(s) that could be
related to the word(s):

Word: %s

Be creative! (Note: give only a list of word(s) in
the provided JSON format, e.g. "response": ["word1",
"word2",...])

C.3 DOCKSTRING: TASK PROMPT

Your task is to find the optimal drug molecule that has
both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower
is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater
than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to valid
SMILES strings.

Now, guess exactly n=%s new molecule(s).

(Note: give only a list of SMILES string(s) in the provided
JSON format, e.g. "response": ["SMILES1", "SMILES2", ...])

C.4 DOCKSTRING: NEIGHBORHOOD SAMPLING PROMPT

Your task is to find the optimal drug molecule that has
both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower
is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater
than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to valid
SMILES strings!

24

Preprint

Here is my guess for a molecule:
SMILES: %s

Now, guess exactly n=%s new variation(s) of my molecule that
could improve the scores to reach the optimal molecule.

(Note: give only a list of SMILES string(s) in the provided
JSON format, e.g. "response": ["SMILES1", "SMILES2", ...])

C.5 ARC: TASK PROMPT

Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid
for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines. Here are
the input and output grids for the reference examples:

Example 1:
Input:
[[1,1,1,...,1]]
Output:
[[2,2,2,...,2]]

Example 2:
Input:
[[2,2,2,...,2]]
Output:
[[3,3,3,...,3]]

...

Here is the input grid for the test example:
Input:
[[3,3,3,...,3]]

Write a Python function ‘transform‘ that can convert any
given input grid to its corresponding output grid based on
the pattern observed in the reference examples.

C.6 ARC: NEIGHBORHOOD SAMPLING PROMPT

Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid
for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines.

Here are the input and output grids for the reference
examples:

Example 1:
Input:
[[1,1,1,...,1]]
Output:
[[2,2,2,...,2]]

...

Here is the input grid for the test example:

25

Preprint

Input:
[[3,3,3,...,3]]

The goal is to write a Python function ‘transform‘ that can
convert any given input grid to its corresponding output
grid based on the pattern observed in the reference examples.

Here is my guess for the function:
‘‘‘python
def transform(input: np.ndarray) -> np.ndarray:

Code
‘‘‘

Provide a variation of my guess that could be the correct
answer.

26

	Introduction
	Related Work
	Background
	MiGrATe: Methodology
	Mixed-Policy Group Construction for Search

	Experiments
	Search Tasks
	Baselines

	Results and Discussion
	Conclusion
	Appendix A
	Experimental Settings
	GRPO Formulation
	Computational Resources

	Appendix B: Additional Experiments
	Island-based Evolution Algorithm
	Can related tasks bootstrap search?
	Tradeoff with Varying and Samples
	Varying Samples
	Alternative local structure sampling in MiGrATe?

	Appendix C: LLM Prompts
	Semantle: Task Prompt
	Semantle: Neighborhood Sampling Prompt
	Dockstring: Task Prompt
	Dockstring: Neighborhood Sampling Prompt
	ARC: Task Prompt
	ARC: Neighborhood Sampling Prompt

