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Abstract

Explainable methods, such as GradCAM, are not always
consistent across image transformations. They are often-
times too broad to be a source of reliable explanations.
We present an approach to train a Convolution Neural Net-
work to simultaneously produce consistent explanations us-
ing saliency maps from post-hoc explanation methods as
regularizers. This in turn creates more robust and con-
fident explanations as well as predictions. We show that
our method improves the consistency of this explainablity
method without any significant accuracy tradeoff.

1. Introduction

Post-hoc explainability methods, such as GradCAM [3],
have been used as supplements to aid understanding of
model predictions. They can help diagnose failure cases in
high-stakes applications such as medical diagnoses or bias
identification. These methods typically try to identify the
most salient or important areas of an image in its classifica-
tion, in the form of a heatmap over the original image.

However, despite the prevalence of these methods in the
application of deep learning, they remain relatively unex-
plored in terms of their accuracy and quality, and thus have
not been applied during the training process. This can be
attributed to the difficulty of attaining ground-truth expla-
nations for any dataset as a result of the subjectivity of ex-
planations in general - two entirely different explanations
for the same image classification may both be equally valid.
Typically, evaluations of these explanations involve perturb-
ing salient areas of the input or the model and observing
the difference in model classifications. One way to evalu-
ate explanations is through their consistency, or their degree
of equivariance under input transformations. For instance,
given an image and a mirror of the same image, the model
explanations should be flipped versions of one another.

We observed one work by Pillai et. al [2] where Grad-
CAM was used in training in order to improve explana-
tion consistency on the output model. In particular, they
framed the problem through contrastive learning. By train-

ing on augmented inputs as positive examples and random
images as negative examples, the authors induced sparse
and spatially unique explanations of their images but sac-
rificed classification accuracy by 2%. We identified what
we believe to be weaknesses with this method. Most no-
tably, we believe that using contrastive learning is an un-
necessary additional step to induce sparsity and regulariza-
tion can achieve similar effects with much faster computa-
tion. In addition, we speculate that image explanation con-
sistency can also be used as a form of regularization and can
improve model accuracy in certain circumstances.

In this work, we examine using consistency as a training
metric along with explanation sparsity as an effective way
to achieve consistent explanations which look considerably
different from baseline methods with minimal cost to accu-
racy. More concretely:

* We define two loss terms L~ and Lg which are differen-
tiable and trainable metrics for model explanation consis-
tency and sparsity, respectively.

* We train networks of various architectures on CUB-200
and Caltech101 using these loss functions and observe
minimal effects on model accuracy while being able to
improve model explanations.

* We study the effects of varying the weights of these two
losses and speculate an entire spectrum of models which
tradeoff model explanation sparsity and consistency while
maintaining high accuracy.

2. Related Work

Explanation Methods: Early attempts to explain CNN-
based image classification models were post-hoc ap-
proaches that generate heat maps highlighting important ar-
eas of the input image. Simonyan et al. (2013) [5] were
the first to introduce gradient-based saliency maps to vi-
sually represent the influence of features on the classifi-
cation model at the pixel level. Building on visual inter-
pretability, Ziler and Fergus (2014) [9] introduced decon-
volutional networks to project feature activations back to
the input space, which Springenberg et al. (2014) [7] used
to improve the clarity of the visualizations. Class Acti-
vation Maps proposed by Zhou et al. (2016) [10] intro-
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duced a novel approach by modifying the CNN architec-
ture to include a global average pooling layer. This imple-
mentation enabled direct visualization of regions relevant to
specific classes, addressing the need for class-specific inter-
pretability. GradCAM [4] was a direct extension of CAM.
It retained the class-specific visualization advantage but re-
moved the architectural constraints of CAM by eliminating
the GAP layer. Instead, they proposed using the gradients
flowing into the final convolutional layer, which made Grad-
CAM more flexible and compatible with a broader range of
CNN architectures.

Regularization with Explanation Methods: Recent
works such as Pillai et al. (2022) [2] has explored using
explanatory models for regularization. Their work intro-
duces, Contrastive GradCAM Consistency (CGC), which
enhances GradCAM’s alignment with human priors, such as
consistency across image transformations, by applying con-
trastive self-supervised learning to model interpretations.
However, while their work achieves greater consistency in
explanations, it comes with the trade-off of reduced classifi-
cation accuracy by 2%. While work on regularization using
saliency maps or explanations is relatively limited, This has
been done in segmentation tasks for medical applications in
a work called GradMask, which penalized the model dur-
ing training by comparing the outputted saliency map with
ground truth segmentations [6]. However, our work will not
require additional ground truth information about the train-
ing data and can be easily applied to existing datasets and
training algorithms. The concept of using explanation con-
sistency has also been used to evaluate saliency methods,
but not for training networks [1].

3. Method
3.1. Problem Formulation

We consider a classification setting in which we want
to train a neural network to simultaneously produce in-
terpretable, consistent explanations without a large trade
off in classification accuracy. More concretely, given a
dataset D = {(xl,yl), ey ($|D|ay|D|)}v where z; € X =
R™*"X¢ gre input images and y € Y are class labels, we
want to train a model f : X — Y such that f(z;) = y;
as much as possible and our saliency method ® gener-
ates consistent and sparse maps ®(f,z;) = M, where
M; € [0, 1)™>™,

3.2. Optimization Objectives

Since our task is explicitly an optimization of various crite-
ria, we proceed by defining a loss term for each metric sep-
arately and combine them all to form a single minimization
objective. These loss terms will be a classification loss, a
consistency loss, and a sparsity loss. Our final loss function
will be the sum of these terms in which we will optimize.

These are also summarized in Figure 1.

3.2.1 Classification Accuracy

The first metric which we seek to measure is the classifica-
tion accuracy on our dataset D. This can easily be measured

as
|D|
1

accuracy = ﬁ ; 1(f (i) = i)

However, this objective is not continuous or differentiable
and is difficult to optimize. Following common practice in
model training, we use cross-entropy loss as our loss func-
tion, which can be defined on a data point (x;,y;) as:

ef(lz)lu
Lcg = —log W s (D

where e/ (%)i corresponds to the network output probability
for the j-th class for the data point z;.

3.2.2 Explanation Consistency

We also want our model to have consistent explanations as
defined in COSE by Daroya et. al [1]. The primary ratio-
nale behind defining explanation consistency lies in using
data augmentations to verify explanations across a single
datapoint. In particular, by training a model with a transfor-
mation t € T, we expect that the model to become invari-
ant to that transformation, meaning f(z;) = f(¢t(z;)). Ina
similar fashion, we also expect that the explanations for that
model will be similarly equivariant on the same transforma-
tion. For instance, if a model attributes the classification of
a particular image of a bird based on its wing patterning, we
expect the model to attribute the classification in a spatially
equivalent way on the flipped version of the image. For ge-
ometric transformations, we expect that the augmented ver-
sion of the explanation for the original image should match
the explanation of the augmented image, or

HR(S, i) = (S, t(wi))-

In this work, we only use geometric transformations of
compositions of crops and flips for simplicity, but this can
be extended to photometric transformations as well.

Given this intuition, we define a consistency loss L¢
which punishes the model for producing inconsistent ex-
planations across an image. We evaluate this loss on a data
point (z;,y;) with saliency method ® and transformation ¢
as

Lo =dt(D(f, 1)), P(f, t(x4))), 2

where d is a distance function between two explanations.
This is also visually explained in Figure 1. Following the
method of COSE, we evaluate the distance of explanations
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Figure 1. A diagram which explains our method and three loss functions. Although not shown for simplicity, the “Input Image” in this
diagram is also perturbed to improve training. The input image starts on the top left and follows three paths which combine to create
our final loss. In the path along the left and bottom side of the diagram, the image goes through typical training using cross-entropy loss
Lc e based on the input image and class label and added to the total loss £. In the middle path, GradCAM is calculated, then the norm
is computed as 3Ls and added to the total loss. Finally, along the top path, the image is augmented and the corresponding GradCAM is
computed, which is compared with the augmented version of the GradCAM in the middle path, giving a consistency loss a.L¢. Altogether,

L=Lce+alc+ BLs.

using 1 — SSIM since we look to minimize L. In addi-
tion, we use GradCAM [3] as our $ explanation since it is
currently the most commonly-used method for evaluating
saliency and benefits from being fast to compute.

3.2.3 Explanation Sparsity

Unfortunately, there are various trivial solutions which a
model can learn to easily optimize L£o. For instance, a
model can either output an explanation which is entirely
zero or covers all of the image uniformly. To prevent the
model from outputting a heatmap of entirely zero, we mod-
ify GradCAM slightly by removing the ReLU in the origi-
nal definition of GradCAM. Without this modification, we
found the model would trivially set all the activations to be
negative and achieve high consistency. To encourage the
network to output meaningful, non-uniform heatmaps, we
add an explanation sparsity term,

Ls = LP(®(f, 1)), )

where LP represents the p-th order vector norm, which
can be calculated defined on a vector v as LP(v) =

oy ; |vj|P. In our experiments, we tested with p = 0,1, 2

and compare their results.

3.2.4 Final Loss Function

In our training, we combine our three objectives into a sin-
gle loss function from the cross-entropy loss given in equa-
tion 1, the consistency loss given in equation 2, and the spar-
sity loss given in equation 3:

L=Lcg+alc+ pLs, “)
where « and (3 are tunable hyperparameters.

3.3. Implementation Details

We used PyTorch to create, train, and evaluate the mod-
els for our experiments. We trained both our ResNet18,
ResNet50, and ConvNext-tiny models starting with pre-
trained weights provided by PyTorch. We used SGD to op-
timize our models. We trained on two datasets, those being
CUB-200 and Caltech101 to cover fine-grained classifica-
tion and general object classification, respectively. We train
baseline models with only cross-entropy loss (eq. 1) as well
as with our loss (eq 4). Our implementation of GradCAM
is a modified version of the pytorch-GradCAM library.

3.3.1 Transformations

For our transformation ¢, we first randomly resize and crop
the input image to a resolution of 224 x 224. The lower and
upper bound of the scale of our random crop is 0.08 and 1.0
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respectively. The ratio of the random resize of the image is
between 0.75 and 1.33. Then we randomly flip the image
with a 0.5 probability. We record our exact augmentations
for each image in order to apply them to our baseline Grad-
CAM heatmap P as well.

3.3.2 GradCAM

We used a GradCAM PyTorch library to compute our Grad-
CAM saliency maps. We modified this library in order to
work with PyTorch’s autograd. This is to allow our con-
sistency and sparsity loss function to be backpropogated
on. We did not apply any form of augmentation or eigen
smoothing to our CAMs for training or in our evaluations.
For ResNet18 and ResNet50 we chose to use the last block
of layer 4 of the model for GradCAM’s target layer. Simi-
larly for ConvNeXT we chose the last convolution layer of
the feature layers before the final pooling layer. The target
class of our CAMs is the class the model predicts - even
if it differs from the actual image label. This same Grad-
CAM configuration was used for every instance of comput-
ing GradCAM in our implementation.

3.3.3 Training

We initialized our models with pretrained weights provided
by PyTorch before our training. For all of our models we
used the same configuration of SGD for our training. We
used a learning rate of 102, momentum of 0.9, and weight
decay of 10~%. In addition, we used a learning rate sched-
uler to reduced the learning rate by a factor of 0.1 every 30
epochs. On the CUB-200 dataset, we trained our models
for 60 epochs. On the Caltech101 dataset we trained for 20
epochs. All models showed their test accuracy converged at
these epoch points on these datasets respectively.

4. Results

Results on different convolution neural network As seen
in Table 1, we examine the differences in model accu-
racy, consistency, and IAUC across three convolutional neu-
ral networks, those being ResNet18, ResNet50, and Con-
vNeXT. As expected to their respective complexities, the
overall performing accuracies improves from ResNet18, to
ResNet50, ConvNeXT.
Results on different datasets: Interestingly, the baseline
consistencies on the Caltech dataset were lower than on
CUB-200 but after training it overall saw higher consisten-
cies. This could be because the Caltech dataset is more di-
verse and produces a larger variety of CAM shapes as op-
pose to the all birds CUB-200 dataset.

Overall, changes in our evaluation metrics are more no-
ticeable on the Caltech dataset. On CUB-200 we observed
some instances where changes in accuracy or IAUC were

too small to be deemed significant. From our testing, we
can comfortably say our method improves the consistency
as that trend was apparent across all models and datasets.

4.1. Consistency

We trained our models using our cross-entropy, consistency,
and sparsity loss method and a baseline model trained with
only cross-entropy loss. In Figure 2, we compared the dis-
tribution of GradCAM consistencies of two such models.
We observed a consistent measurable increase in consis-
tency scores with models using our training method over
the baseline.

Distribution of SSIM scores of ResNet50

Baseline

200 4 Ours

150 4

100 4

Frequency

50 A

0 T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
S5IM

Figure 2. This is the distribution on SSIM scores on the CUB-200
test dataset using the baseline and our consistency trained model.
We observe the distribution of the GradCAM SSIM scores shift
upwards. The mean and standard deviation of the baseline scores
are 0.736 and 0.1391. This particular consistency trained model
saw an increased mean of 0.7604 and a decreased standard devia-
tion of 0.1329.

4.2. Tradeoffs with other Evaluation Metrics

Accuracy Tradeoff Overall, there is a relatively small
tradeoff between test accuracies and consistency for our
method, as demonstrated in Figure 3. We evaluated models
trained on random hyperparameters to show that this small
tradeoff is not the result of hyperparemeter optimization.
For ConvNext-Tiny, the mean tradeoff is © = —0.1057
with a standard deviation of ¢ = 0.6717; for ResNet-18,
= —0.3151, 0 = 0.7494, and for ResNet50 the mean is
© = 2.5918 with a standard deviation of ¢ = 6.5049. This
is a four times smaller tradeoff than seen in prior work [2].
Insertion AUC score (IAUC): This metric, proposed in Vi-
tali et. al (2018) [8], aims to quantify the importance of
pixels in synthesizing an image. It measures the rise in the
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CUB-200 Caltech
Method | Top-1 Acc (%) | Consistency | IAUC | Top-1 Acc (%) | Consistency [ IAUC
ResNetl8  Baseline 75.40 74.30 0.55 92.68 69.67 0.83
Ours 75.97 74.93 0.64 92.50 83.44 0.82
ResNet50  Baseline 81.99 69.65 0.72 94.06 69.35 0.82
Ours 81.79 89.64 0.77 91.41 84.21 0.85
ConvNeXT Base 85.29 73.35 0.79 94.06 41.00 0.88
Ours 85.45 74.61 0.77 94.46 87.97 0.80
Table 1. Quantitative Results
Tradeoff of Test Accuracy P O 1 2
ResNet-50 I f— Model Accuracy (%) | 80.62 81.71 81.26
ResNet-18 HTH o 101 100 1071
ConvNetXTiny HIH Model Accuracy (%) | 0.50 30.08 81.91
It ReilatliveError /6, 1075 1076 1077
Figure 3. These are Box plots representing the distribution of test Model Accuracy (%) | 30.08 81.71 80.24

accuracy trade-offs for models with varying architectures trained
on random hyperparameters on the Caltech dataset.

probability of a specific class of interest as pixels are added
according to a generated importance map. In our case, the
importance map is our GradCAM heatmap. This is done by
inserting pixels from the highest to lowest attribution scores
and then making predictions. The area under curve (AUC)
of the ROC curve of these predictions is the IAUC score.
The purpose of this metric is to provide a quantitative as-
sessment of causal explanations in image synthesis. For our
purposes, higher IAUC scores from our GradCAM saliency
maps is an indication of better explanations.

We saw notable improvements in the IAUC scores for
models on the CUB-200 dataset. The better performing a
model is, the smaller the difference in IAUC between our
method and the baseline becomes. This is supported by
the observation that ConvNeXT, the best performing model,
even saw small decreases in JAUC; and CUB-200, the more
difficult dataset, seeing larger changes in IAUC. The rea-
soning for this could be that well performing models are
already adept to requiring less information of an image to
make the correct prediction. In general, it seems like our
method trained weaker performing models to have a bet-
ter balance of sensitivity and specificity in their predictions
than its baseline.

4.3. Ablation Studies
4.3.1 Quantitative Effects of Hyperparameters

In Figure 4 and Table 2, we explore the effects of varying
hyperparameters «, 3, p on model explanations and model
accuracy while fixing the others for ResNet50 on the CUB

Table 2. Model test accuracies on CUB-200 for the models used
to generate the images in Figure 4. In the first table o = 10°, 8 =
10~°, while in the second table, 3 = 107°,p = 1. In the last
table,a =1,p=1.

dataset.

Interestingly, setting o = 1,3 = 107° gives a sparser
explanation which is not as sparse as & = 0.1, = 1075,
while both models still achieve high accuracy, indicat-
ing there is a range of models which are still accurate
but balance explanation consistency and sparsity differ-
ently. Generally, having sparser explanations leads to lower
consistency, since it is more difficult to overlap sparser
heatmaps. Crucially, in our results in Figure 4, we see that
varying one parameter of «, 8 while fixing the other leads to
a set of accurate solutions, the boundary of which has signif-
icantly different explanations from the others. Yet, the loca-
tion of this boundary in the hyperparameter space changes
as we vary the other hyperparameter. We might expect there
to be a range of models on this boundary, which vary in how
they tradeoff consistency and sparsity while maintaining ac-
curacy.

4.3.2 Qualitative Effects of Hyperparameters

In the first row of images of Figure 4, we observe the ef-
fects of varying p, or the type of norm, from p = 0 to
p = 2. We observe that the explanations using p = 0 and
p = 2 appear quite similar. We believe using p = 0 is
difficult to train due to the discontinuous nature of the loss
function, so the model is unlikely to produce sparse expla-
nations through this training. On the other hand, p = 2
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Figure 4.

We observe GradCAM outputs generated using
ResNet50 on a specific image in the CUB dataset trained using
our consistency loss with varying types of regularization, «, 5. In
row 1, we fix «, 8 while changing the type of regularization be-
tween L°-norm, L'-norm, and L?-norm. In row two, we fix the
regularization to L*-norm and # = 10~° while varying «. In the
last row, we fix @ = 1 while varying .

is simpler to train, but does not to lead to sparsity since
L? norm is lower for uniform vectors compared to vectors
with relatively higher but fewer components. Finally, the
explanation generated using p = 1 produces a significantly
sparser output as expected, since L' norm (also known as
LASSO) prefers sparser parameterizations over those with
higher numbers of smaller components. We see that each
of these methods produces approximately the same model
accuracy of around 80-81 percent, meaning modifying this
parameter has little effect on the accuracy of the model, but
does affect the resulting model explanations.

In the second and third row of images, we see the neces-
sity of balancing « and /3 in order to prevent the model from
learning trivial solutions. First, we fix p = 1 and 8 = 10~
while varying ««. We see that having an excessively large
value of « leads to the model trivially outputting an expla-
nation centered on the corners of the image. These models
also have dismal accuracy of 0.50% and 30.08% for o« = 10
and a = 1, respectively. The model produces trivial and
sparse explanations while almost ignoring the classification
task altogether. However, using @ = 0.1 produces an ex-
ceptionally sparse explanation with a high accuracy model
of 81.91% on the test set, indicating the model has correctly

balanced the classification task while also producing sparse
explanations. In the last row of images, we fixa =1,p =1
and vary 3, and we find having 3 be too high leads to the
model not learning, while lower 3 gives broad explanations
which are similar to the baseline. Finally 3 = 10~ offers
a good middle-ground of explanation sparsity with high ac-
curacy.

5. Conclusion

We introduce a new set of loss functions which act on
model explanations to induce explanation consistency and
sparsity while maintaining relatively high accuracy. Using
GradCAM as our saliency method, we examine the effects
of our losses both quantitatively on model performance as
well as qualitatively on model explanation behavior. We
find that with careful hyperparameter tuning, we are able to
produce models which achieve superior explanation consis-
tency while maintaining similar (and sometimes superior)
performance to typical training. We speculate that there
exists an entire spectrum of models which balance expla-
nation consistency and sparsity while maintaining perfor-
mance, which is achieved by modifying both o and S si-
multaneously. This can achieve exceptionally sparse ex-
planations like those in Figure 4 which are reminiscent of
those described in Pillai et. al [2] without contrastive learn-
ing. However, we admit this training method is not without
faults. The tuning of «, § is very sensitive and if either pa-
rameter is not set correctly, the training will fail. In addition,
the use of GradCAM in training requires additional VRAM
resources due to storing the activations and gradients of the
network in memory until the backwards pass which we did
not anticipate during the design phase of this project. We
speculate there are possible optimizations which can mit-
igate this, but due to time constraints we were unable to
explore this fully.

In addition, there are still an abundance of topics which
can be explored in future works regarding training mod-
els on explanation consistency. We focused on our efforts
on the performance of ResNet50 for the CUB dataset, and
eventually extended our results to Caltech dataset and the
networks ResNetl8, and ConvNeXT. As a result of time
constraints, we were not able to fully explore the set of hy-
perparameters available in this problem and we found rela-
tively less success in these settings. Furthermore, this work
can easily be extended to vision transformers, and given
the fact that COSE was found to be generally higher in vi-
sion transformer networks compared to their convolutional
counterparts [1], we believe this training could possibly be
even more fruitful on these architectures.
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