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Abstract

Explainable methods, such as GradCAM, are not always001
consistent across image transformations. They are often-002
times too broad to be a source of reliable explanations.003
We present an approach to train a Convolution Neural Net-004
work to simultaneously produce consistent explanations us-005
ing saliency maps from post-hoc explanation methods as006
regularizers. This in turn creates more robust and con-007
fident explanations as well as predictions. We show that008
our method improves the consistency of this explainablity009
method without any significant accuracy tradeoff.010

1. Introduction011

Post-hoc explainability methods, such as GradCAM [3],012
have been used as supplements to aid understanding of013
model predictions. They can help diagnose failure cases in014
high-stakes applications such as medical diagnoses or bias015
identification. These methods typically try to identify the016
most salient or important areas of an image in its classifica-017
tion, in the form of a heatmap over the original image.018

However, despite the prevalence of these methods in the019
application of deep learning, they remain relatively unex-020
plored in terms of their accuracy and quality, and thus have021
not been applied during the training process. This can be022
attributed to the difficulty of attaining ground-truth expla-023
nations for any dataset as a result of the subjectivity of ex-024
planations in general - two entirely different explanations025
for the same image classification may both be equally valid.026
Typically, evaluations of these explanations involve perturb-027
ing salient areas of the input or the model and observing028
the difference in model classifications. One way to evalu-029
ate explanations is through their consistency, or their degree030
of equivariance under input transformations. For instance,031
given an image and a mirror of the same image, the model032
explanations should be flipped versions of one another.033

We observed one work by Pillai et. al [2] where Grad-034
CAM was used in training in order to improve explana-035
tion consistency on the output model. In particular, they036
framed the problem through contrastive learning. By train-037

ing on augmented inputs as positive examples and random 038
images as negative examples, the authors induced sparse 039
and spatially unique explanations of their images but sac- 040
rificed classification accuracy by 2%. We identified what 041
we believe to be weaknesses with this method. Most no- 042
tably, we believe that using contrastive learning is an un- 043
necessary additional step to induce sparsity and regulariza- 044
tion can achieve similar effects with much faster computa- 045
tion. In addition, we speculate that image explanation con- 046
sistency can also be used as a form of regularization and can 047
improve model accuracy in certain circumstances. 048

In this work, we examine using consistency as a training 049
metric along with explanation sparsity as an effective way 050
to achieve consistent explanations which look considerably 051
different from baseline methods with minimal cost to accu- 052
racy. More concretely: 053
• We define two loss terms LC and LS which are differen- 054

tiable and trainable metrics for model explanation consis- 055
tency and sparsity, respectively. 056

• We train networks of various architectures on CUB-200 057
and Caltech101 using these loss functions and observe 058
minimal effects on model accuracy while being able to 059
improve model explanations. 060

• We study the effects of varying the weights of these two 061
losses and speculate an entire spectrum of models which 062
tradeoff model explanation sparsity and consistency while 063
maintaining high accuracy. 064

2. Related Work 065

Explanation Methods: Early attempts to explain CNN- 066
based image classification models were post-hoc ap- 067
proaches that generate heat maps highlighting important ar- 068
eas of the input image. Simonyan et al. (2013) [5] were 069
the first to introduce gradient-based saliency maps to vi- 070
sually represent the influence of features on the classifi- 071
cation model at the pixel level. Building on visual inter- 072
pretability, Ziler and Fergus (2014) [9] introduced decon- 073
volutional networks to project feature activations back to 074
the input space, which Springenberg et al. (2014) [7] used 075
to improve the clarity of the visualizations. Class Acti- 076
vation Maps proposed by Zhou et al. (2016) [10] intro- 077
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duced a novel approach by modifying the CNN architec-078
ture to include a global average pooling layer. This imple-079
mentation enabled direct visualization of regions relevant to080
specific classes, addressing the need for class-specific inter-081
pretability. GradCAM [4] was a direct extension of CAM.082
It retained the class-specific visualization advantage but re-083
moved the architectural constraints of CAM by eliminating084
the GAP layer. Instead, they proposed using the gradients085
flowing into the final convolutional layer, which made Grad-086
CAM more flexible and compatible with a broader range of087
CNN architectures.088

Regularization with Explanation Methods: Recent089
works such as Pillai et al. (2022) [2] has explored using090
explanatory models for regularization. Their work intro-091
duces, Contrastive GradCAM Consistency (CGC), which092
enhances GradCAM’s alignment with human priors, such as093
consistency across image transformations, by applying con-094
trastive self-supervised learning to model interpretations.095
However, while their work achieves greater consistency in096
explanations, it comes with the trade-off of reduced classifi-097
cation accuracy by 2%. While work on regularization using098
saliency maps or explanations is relatively limited, This has099
been done in segmentation tasks for medical applications in100
a work called GradMask, which penalized the model dur-101
ing training by comparing the outputted saliency map with102
ground truth segmentations [6]. However, our work will not103
require additional ground truth information about the train-104
ing data and can be easily applied to existing datasets and105
training algorithms. The concept of using explanation con-106
sistency has also been used to evaluate saliency methods,107
but not for training networks [1].108

3. Method109

3.1. Problem Formulation110

We consider a classification setting in which we want111
to train a neural network to simultaneously produce in-112
terpretable, consistent explanations without a large trade113
off in classification accuracy. More concretely, given a114
dataset D = {(x1, y1), ..., (x|D|, y|D|)}, where xi ∈ X =115
Rm×n×c are input images and y ∈ Y are class labels, we116
want to train a model f : X → Y such that f(xi) = yi117
as much as possible and our saliency method Φ gener-118
ates consistent and sparse maps Φ(f, xi) = Mi where119
Mi ∈ [0, 1]m×n.120

3.2. Optimization Objectives121

Since our task is explicitly an optimization of various crite-122
ria, we proceed by defining a loss term for each metric sep-123
arately and combine them all to form a single minimization124
objective. These loss terms will be a classification loss, a125
consistency loss, and a sparsity loss. Our final loss function126
will be the sum of these terms in which we will optimize.127

These are also summarized in Figure 1. 128

3.2.1 Classification Accuracy 129

The first metric which we seek to measure is the classifica-
tion accuracy on our dataset D. This can easily be measured
as

accuracy =
1

|D|

|D|∑
i=1

1(f(xi) = yi)

However, this objective is not continuous or differentiable 130
and is difficult to optimize. Following common practice in 131
model training, we use cross-entropy loss as our loss func- 132
tion, which can be defined on a data point (xi, yi) as: 133

LCE = − log

(
ef(xi)yi∑
j e

f(xi)j

)
, (1) 134

where ef(xi)j corresponds to the network output probability 135
for the j-th class for the data point xi. 136

3.2.2 Explanation Consistency 137

We also want our model to have consistent explanations as
defined in COSE by Daroya et. al [1]. The primary ratio-
nale behind defining explanation consistency lies in using
data augmentations to verify explanations across a single
datapoint. In particular, by training a model with a transfor-
mation t ∈ T , we expect that the model to become invari-
ant to that transformation, meaning f(xi) = f(t(xi)). In a
similar fashion, we also expect that the explanations for that
model will be similarly equivariant on the same transforma-
tion. For instance, if a model attributes the classification of
a particular image of a bird based on its wing patterning, we
expect the model to attribute the classification in a spatially
equivalent way on the flipped version of the image. For ge-
ometric transformations, we expect that the augmented ver-
sion of the explanation for the original image should match
the explanation of the augmented image, or

t(Φ(f, xi)) = Φ(f, t(xi)).

In this work, we only use geometric transformations of 138
compositions of crops and flips for simplicity, but this can 139
be extended to photometric transformations as well. 140

Given this intuition, we define a consistency loss LC 141
which punishes the model for producing inconsistent ex- 142
planations across an image. We evaluate this loss on a data 143
point (xi, yi) with saliency method Φ and transformation t 144
as 145

LC = d (t(Φ(f, xi)),Φ(f, t(xi))) , (2) 146

where d is a distance function between two explanations. 147
This is also visually explained in Figure 1. Following the 148
method of COSE, we evaluate the distance of explanations 149
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Figure 1. A diagram which explains our method and three loss functions. Although not shown for simplicity, the ”Input Image” in this
diagram is also perturbed to improve training. The input image starts on the top left and follows three paths which combine to create
our final loss. In the path along the left and bottom side of the diagram, the image goes through typical training using cross-entropy loss
LCE based on the input image and class label and added to the total loss L. In the middle path, GradCAM is calculated, then the norm
is computed as βLS and added to the total loss. Finally, along the top path, the image is augmented and the corresponding GradCAM is
computed, which is compared with the augmented version of the GradCAM in the middle path, giving a consistency loss αLC . Altogether,
L = LCE + αLC + βLS .

using 1 − SSIM since we look to minimize LC . In addi-150
tion, we use GradCAM [3] as our Φ explanation since it is151
currently the most commonly-used method for evaluating152
saliency and benefits from being fast to compute.153

3.2.3 Explanation Sparsity154

Unfortunately, there are various trivial solutions which a155
model can learn to easily optimize LC . For instance, a156
model can either output an explanation which is entirely157
zero or covers all of the image uniformly. To prevent the158
model from outputting a heatmap of entirely zero, we mod-159
ify GradCAM slightly by removing the ReLU in the origi-160
nal definition of GradCAM. Without this modification, we161
found the model would trivially set all the activations to be162
negative and achieve high consistency. To encourage the163
network to output meaningful, non-uniform heatmaps, we164
add an explanation sparsity term,165

LS = Lp(Φ(f, xi)), (3)166

where Lp represents the p-th order vector norm, which167
can be calculated defined on a vector v as Lp(v) =168
p

√∑
j |vj |p. In our experiments, we tested with p = 0, 1, 2169

and compare their results.170

3.2.4 Final Loss Function 171

In our training, we combine our three objectives into a sin- 172
gle loss function from the cross-entropy loss given in equa- 173
tion 1, the consistency loss given in equation 2, and the spar- 174
sity loss given in equation 3: 175

L = LCE + αLC + βLS , (4) 176

where α and β are tunable hyperparameters. 177

3.3. Implementation Details 178

We used PyTorch to create, train, and evaluate the mod- 179
els for our experiments. We trained both our ResNet18, 180
ResNet50, and ConvNext-tiny models starting with pre- 181
trained weights provided by PyTorch. We used SGD to op- 182
timize our models. We trained on two datasets, those being 183
CUB-200 and Caltech101 to cover fine-grained classifica- 184
tion and general object classification, respectively. We train 185
baseline models with only cross-entropy loss (eq. 1) as well 186
as with our loss (eq 4). Our implementation of GradCAM 187
is a modified version of the pytorch-GradCAM library. 188

3.3.1 Transformations 189

For our transformation t, we first randomly resize and crop 190
the input image to a resolution of 224×224. The lower and 191
upper bound of the scale of our random crop is 0.08 and 1.0 192
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respectively. The ratio of the random resize of the image is193
between 0.75 and 1.33. Then we randomly flip the image194
with a 0.5 probability. We record our exact augmentations195
for each image in order to apply them to our baseline Grad-196
CAM heatmap Φ as well.197

3.3.2 GradCAM198

We used a GradCAM PyTorch library to compute our Grad-199
CAM saliency maps. We modified this library in order to200
work with PyTorch’s autograd. This is to allow our con-201
sistency and sparsity loss function to be backpropogated202
on. We did not apply any form of augmentation or eigen203
smoothing to our CAMs for training or in our evaluations.204
For ResNet18 and ResNet50 we chose to use the last block205
of layer 4 of the model for GradCAM’s target layer. Simi-206
larly for ConvNeXT we chose the last convolution layer of207
the feature layers before the final pooling layer. The target208
class of our CAMs is the class the model predicts - even209
if it differs from the actual image label. This same Grad-210
CAM configuration was used for every instance of comput-211
ing GradCAM in our implementation.212

3.3.3 Training213

We initialized our models with pretrained weights provided214
by PyTorch before our training. For all of our models we215
used the same configuration of SGD for our training. We216
used a learning rate of 10−3, momentum of 0.9, and weight217
decay of 10−4. In addition, we used a learning rate sched-218
uler to reduced the learning rate by a factor of 0.1 every 30219
epochs. On the CUB-200 dataset, we trained our models220
for 60 epochs. On the Caltech101 dataset we trained for 20221
epochs. All models showed their test accuracy converged at222
these epoch points on these datasets respectively.223

4. Results224

Results on different convolution neural network As seen225
in Table 1, we examine the differences in model accu-226
racy, consistency, and IAUC across three convolutional neu-227
ral networks, those being ResNet18, ResNet50, and Con-228
vNeXT. As expected to their respective complexities, the229
overall performing accuracies improves from ResNet18, to230
ResNet50, ConvNeXT.231
Results on different datasets: Interestingly, the baseline232
consistencies on the Caltech dataset were lower than on233
CUB-200 but after training it overall saw higher consisten-234
cies. This could be because the Caltech dataset is more di-235
verse and produces a larger variety of CAM shapes as op-236
pose to the all birds CUB-200 dataset.237

Overall, changes in our evaluation metrics are more no-238
ticeable on the Caltech dataset. On CUB-200 we observed239
some instances where changes in accuracy or IAUC were240

too small to be deemed significant. From our testing, we 241
can comfortably say our method improves the consistency 242
as that trend was apparent across all models and datasets. 243

4.1. Consistency 244

We trained our models using our cross-entropy, consistency, 245
and sparsity loss method and a baseline model trained with 246
only cross-entropy loss. In Figure 2, we compared the dis- 247
tribution of GradCAM consistencies of two such models. 248
We observed a consistent measurable increase in consis- 249
tency scores with models using our training method over 250
the baseline.

Figure 2. This is the distribution on SSIM scores on the CUB-200
test dataset using the baseline and our consistency trained model.
We observe the distribution of the GradCAM SSIM scores shift
upwards. The mean and standard deviation of the baseline scores
are 0.736 and 0.1391. This particular consistency trained model
saw an increased mean of 0.7604 and a decreased standard devia-
tion of 0.1329.

251

4.2. Tradeoffs with other Evaluation Metrics 252

Accuracy Tradeoff Overall, there is a relatively small 253
tradeoff between test accuracies and consistency for our 254
method, as demonstrated in Figure 3. We evaluated models 255
trained on random hyperparameters to show that this small 256
tradeoff is not the result of hyperparemeter optimization. 257
For ConvNext-Tiny, the mean tradeoff is µ = −0.1057 258
with a standard deviation of σ = 0.6717; for ResNet-18, 259
µ = −0.3151, σ = 0.7494, and for ResNet50 the mean is 260
µ = 2.5918 with a standard deviation of σ = 6.5049. This 261
is a four times smaller tradeoff than seen in prior work [2]. 262
Insertion AUC score (IAUC): This metric, proposed in Vi- 263
tali et. al (2018) [8], aims to quantify the importance of 264
pixels in synthesizing an image. It measures the rise in the 265
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CUB-200 Caltech
Method Top-1 Acc (%) Consistency IAUC Top-1 Acc (%) Consistency IAUC

ResNet18 Baseline 75.40 74.30 0.55 92.68 69.67 0.83
Ours 75.97 74.93 0.64 92.50 83.44 0.82

ResNet50 Baseline 81.99 69.65 0.72 94.06 69.35 0.82
Ours 81.79 89.64 0.77 91.41 84.21 0.85

ConvNeXT Base 85.29 73.35 0.79 94.06 41.00 0.88
Ours 85.45 74.61 0.77 94.46 87.97 0.80

Table 1. Quantitative Results

Figure 3. These are Box plots representing the distribution of test
accuracy trade-offs for models with varying architectures trained
on random hyperparameters on the Caltech dataset.

probability of a specific class of interest as pixels are added266
according to a generated importance map. In our case, the267
importance map is our GradCAM heatmap. This is done by268
inserting pixels from the highest to lowest attribution scores269
and then making predictions. The area under curve (AUC)270
of the ROC curve of these predictions is the IAUC score.271
The purpose of this metric is to provide a quantitative as-272
sessment of causal explanations in image synthesis. For our273
purposes, higher IAUC scores from our GradCAM saliency274
maps is an indication of better explanations.275

We saw notable improvements in the IAUC scores for276
models on the CUB-200 dataset. The better performing a277
model is, the smaller the difference in IAUC between our278
method and the baseline becomes. This is supported by279
the observation that ConvNeXT, the best performing model,280
even saw small decreases in IAUC; and CUB-200, the more281
difficult dataset, seeing larger changes in IAUC. The rea-282
soning for this could be that well performing models are283
already adept to requiring less information of an image to284
make the correct prediction. In general, it seems like our285
method trained weaker performing models to have a bet-286
ter balance of sensitivity and specificity in their predictions287
than its baseline.288

4.3. Ablation Studies289

4.3.1 Quantitative Effects of Hyperparameters290

In Figure 4 and Table 2, we explore the effects of varying291
hyperparameters α, β, p on model explanations and model292
accuracy while fixing the others for ResNet50 on the CUB293

p 0 1 2
Model Accuracy (%) 80.62 81.71 81.26

α 101 100 10−1

Model Accuracy (%) 0.50 30.08 81.91

β 10−5 10−6 10−7

Model Accuracy (%) 30.08 81.71 80.24

Table 2. Model test accuracies on CUB-200 for the models used
to generate the images in Figure 4. In the first table α = 100, β =
10−6, while in the second table, β = 10−5, p = 1. In the last
table, α = 1, p = 1.

dataset. 294

Interestingly, setting α = 1, β = 10−6 gives a sparser 295
explanation which is not as sparse as α = 0.1, β = 10−5, 296
while both models still achieve high accuracy, indicat- 297
ing there is a range of models which are still accurate 298
but balance explanation consistency and sparsity differ- 299
ently. Generally, having sparser explanations leads to lower 300
consistency, since it is more difficult to overlap sparser 301
heatmaps. Crucially, in our results in Figure 4, we see that 302
varying one parameter of α, β while fixing the other leads to 303
a set of accurate solutions, the boundary of which has signif- 304
icantly different explanations from the others. Yet, the loca- 305
tion of this boundary in the hyperparameter space changes 306
as we vary the other hyperparameter. We might expect there 307
to be a range of models on this boundary, which vary in how 308
they tradeoff consistency and sparsity while maintaining ac- 309
curacy. 310

4.3.2 Qualitative Effects of Hyperparameters 311

In the first row of images of Figure 4, we observe the ef- 312
fects of varying p, or the type of norm, from p = 0 to 313
p = 2. We observe that the explanations using p = 0 and 314
p = 2 appear quite similar. We believe using p = 0 is 315
difficult to train due to the discontinuous nature of the loss 316
function, so the model is unlikely to produce sparse expla- 317
nations through this training. On the other hand, p = 2 318
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Figure 4. We observe GradCAM outputs generated using
ResNet50 on a specific image in the CUB dataset trained using
our consistency loss with varying types of regularization, α, β. In
row 1, we fix α, β while changing the type of regularization be-
tween L0-norm, L1-norm, and L2-norm. In row two, we fix the
regularization to L1-norm and β = 10−5 while varying α. In the
last row, we fix α = 1 while varying β.

is simpler to train, but does not to lead to sparsity since319
L2 norm is lower for uniform vectors compared to vectors320
with relatively higher but fewer components. Finally, the321
explanation generated using p = 1 produces a significantly322
sparser output as expected, since L1 norm (also known as323
LASSO) prefers sparser parameterizations over those with324
higher numbers of smaller components. We see that each325
of these methods produces approximately the same model326
accuracy of around 80-81 percent, meaning modifying this327
parameter has little effect on the accuracy of the model, but328
does affect the resulting model explanations.329

In the second and third row of images, we see the neces-330
sity of balancing α and β in order to prevent the model from331
learning trivial solutions. First, we fix p = 1 and β = 10−6332
while varying α. We see that having an excessively large333
value of α leads to the model trivially outputting an expla-334
nation centered on the corners of the image. These models335
also have dismal accuracy of 0.50% and 30.08% for α = 10336
and α = 1, respectively. The model produces trivial and337
sparse explanations while almost ignoring the classification338
task altogether. However, using α = 0.1 produces an ex-339
ceptionally sparse explanation with a high accuracy model340
of 81.91% on the test set, indicating the model has correctly341

balanced the classification task while also producing sparse 342
explanations. In the last row of images, we fix α = 1, p = 1 343
and vary β, and we find having β be too high leads to the 344
model not learning, while lower β gives broad explanations 345
which are similar to the baseline. Finally β = 10−6 offers 346
a good middle-ground of explanation sparsity with high ac- 347
curacy. 348

5. Conclusion 349

We introduce a new set of loss functions which act on 350
model explanations to induce explanation consistency and 351
sparsity while maintaining relatively high accuracy. Using 352
GradCAM as our saliency method, we examine the effects 353
of our losses both quantitatively on model performance as 354
well as qualitatively on model explanation behavior. We 355
find that with careful hyperparameter tuning, we are able to 356
produce models which achieve superior explanation consis- 357
tency while maintaining similar (and sometimes superior) 358
performance to typical training. We speculate that there 359
exists an entire spectrum of models which balance expla- 360
nation consistency and sparsity while maintaining perfor- 361
mance, which is achieved by modifying both α and β si- 362
multaneously. This can achieve exceptionally sparse ex- 363
planations like those in Figure 4 which are reminiscent of 364
those described in Pillai et. al [2] without contrastive learn- 365
ing. However, we admit this training method is not without 366
faults. The tuning of α, β is very sensitive and if either pa- 367
rameter is not set correctly, the training will fail. In addition, 368
the use of GradCAM in training requires additional VRAM 369
resources due to storing the activations and gradients of the 370
network in memory until the backwards pass which we did 371
not anticipate during the design phase of this project. We 372
speculate there are possible optimizations which can mit- 373
igate this, but due to time constraints we were unable to 374
explore this fully. 375

In addition, there are still an abundance of topics which 376
can be explored in future works regarding training mod- 377
els on explanation consistency. We focused on our efforts 378
on the performance of ResNet50 for the CUB dataset, and 379
eventually extended our results to Caltech dataset and the 380
networks ResNet18, and ConvNeXT. As a result of time 381
constraints, we were not able to fully explore the set of hy- 382
perparameters available in this problem and we found rela- 383
tively less success in these settings. Furthermore, this work 384
can easily be extended to vision transformers, and given 385
the fact that COSE was found to be generally higher in vi- 386
sion transformer networks compared to their convolutional 387
counterparts [1], we believe this training could possibly be 388
even more fruitful on these architectures. 389
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